
Bitmap-Based Security Monitoring for Deeply Embedded
Systems

ANNI PENG, National Computer Network Intrusion Protection Center, UCAS, Beijing, China
DONGLIANG FANG, Institute of Information Engineering, CAS, UCAS, Beijing, China
LE GUAN, University of Georgia, Athens, GA, USA
ERIK VAN DER KOUWE, Vrije Universiteit Amsterdam, Amsterdam, Netherland
YIN LI, National Computer Network Intrusion Protection Center, UCAS, Beijing, China
WENWEN WANG, University of Georgia, Athens, GA, USA
LIMIN SUN, Institute of Information Engineering, CAS, UCAS, Beijing, China
YUQING ZHANG, National Computer Network Intrusion Protection Center, UCAS, Beijing, China

Deeply embedded systems powered by microcontrollers are becoming popular with the emergence of Internet-
of-Things (IoT) technology. However, these devices primarily run C/C++ code and are susceptible to memory
bugs, which can potentially lead to both control data attacks and non-control data attacks. Existing defense
mechanisms (such as control-flow integrity (CFI), dataflow integrity (DFI) andwrite integrity testing (WIT), etc.)
consume amassive amount of resources, making them less practical in real products. To make it lightweight, we
design a bitmap-based allowlist mechanism to unify the storage of the runtime data for protecting both control
data and non-control data. The memory requirements are constant and small, regardless of the number of
deployed defense mechanisms.We store the allowlist in the TrustZone to ensure its integrity and confidentiality.
Meanwhile, we perform an offline analysis to detect potential collisions and make corresponding adjustments
when it happens. We have implemented our idea on an ARM Cortex-M-based development board. Our
evaluation results show a substantial reduction in memory consumption when deploying the proposed CFI
and DFI mechanisms, without compromising runtime performance. Specifically, our prototype enforces CFI
and DFI at a cost of just 2.09% performance overhead and 32.56% memory overhead on average.

CCS Concepts: • Computer systems organization→ Embedded and cyber-physical systems; • Security
and privacy → Systems security;

Additional Key Words and Phrases: CFI, DFI, microcontroller, TEE

This work was supported in part by National Key Research and Development Program of China (Nos. 2023YFB3106400
and 2023QY1202), the National Natural Science Foundation (NSF) of China (U2336203 and U1836210), the Key Research
and Development Science and Technology of Hainan Province (GHYF2022010), Beijing NSF (4242031), Beijing NSF (Grant
No. L234033), the Netherlands Organization for Scientific Research (NWO) (Grant No. VI.Veni.202.212 VENI “Vulcan”),
and U.S. NSF (Grant No. 2238264). Authors’ Contact Information: Anni Peng, National Computer Network Intrusion
Protection Center, UCAS, Beijing, China; e-mail: pengan@nipc.org.cn; Dongliang Fang, Institute of Information Engineering,
CAS, UCAS, Beijing, China; e-mail: fangdongliang@iie.ac.cn; Le Guan, University of Georgia, Athens, GA, USA; e-mail:
leguan@cs.uga.edu; Erik van der Kouwe, Vrije Universiteit Amsterdam, Amsterdam, Netherland; e-mail: vdkouwe@cs.vu.nl;
Yin Li, National Computer Network Intrusion Protection Center, UCAS, Beijing, China; e-mail: liyin@nipc.org.cn; Wenwen
Wang, University of Georgia, Athens, GA, USA; e-mail: wenwen@cs.uga.edu.cn; Limin Sun, Institute of Information
Engineering, CAS, UCAS, Beijing, China; e-mail: sunlimin@iie.ac.cn; Yuqing Zhang (Corresponding author), National
Computer Network Intrusion Protection Center, UCAS, Beijing, China; e-mail: zhangyq@nipc.org.cn.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7392/2024/9-ART192
https://doi.org/10.1145/3672460

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

https://orcid.org/0000-0003-4311-9434
https://orcid.org/0009-0005-7484-1333
https://orcid.org/0000-0002-8205-5616
https://orcid.org/0000-0002-0312-9913
https://orcid.org/0000-0002-0085-6429
https://orcid.org/0000-0003-0840-4846
https://orcid.org/0000-0003-2745-7521
https://orcid.org/0000-0001-8306-7195
mailto:permissions@acm.org
https://doi.org/10.1145/3672460
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672460&domain=pdf&date_stamp=2024-09-27

192:2 A. Peng et al.

ACM Reference format:
Anni Peng, Dongliang Fang, Le Guan, Erik van der Kouwe, Yin Li, Wenwen Wang, Limin Sun, and Yuqing
Zhang. 2024. Bitmap-Based Security Monitoring for Deeply Embedded Systems. ACM Trans. Softw. Eng.
Methodol. 33, 7, Article 192 (September 2024), 31 pages.
https://doi.org/10.1145/3672460

1 Introduction
Deeply embedded systems powered by Microcontroller Units (MCUs) increasingly affect our
daily lives, as exemplified in health care, autonomous driving, home security, and so on. Following
the Internet-of-Things (IoT) trend, devices are more and more connected, which enlarges the
attack surface, making it challenging to safeguard the security of these devices. For example,
attackers were able to exploit firmware vulnerabilities to remotely hijack the target device or launch
Denial of Service attacks [10, 32, 43, 45, 73]. They have successfully compromised a variety of
devices, including smart lights [64], smart cars [36, 40, 48], and smart medical devices [30, 57].

Since it is almost impossible to eliminate all software bugs, mitigating the impact of exploitation
becomes critical. Over the years, Control-Flow Integrity (CFI) [55, 74] and Dataflow Integrity
(DFI) [16, 51] have established themselves as two important security properties we want to enforce
in a computing system. Specifically, CFI is violated when the control data (e.g., function pointers and
return addresses) are corrupted. DFI is violated whenever a variable is illegally accessed. Existing
work primarily focuses on enforcing CFI on embedded devices, as demonstrated by a recent survey
[54] that reported the absence of data integrity protection in these systems. Current approaches
struggle to prevent data-only attacks, and enforcing DFI online typically necessitates heavy instru-
mentation for dataflow tracking. While existing CFI/DFI solutions have shown encouraging results
in protecting commodity OSs, they consume considerable memory and computation resources [5,
13, 15, 16], rendering them inviable in resource-constrained MCU-based embedded systems (e.g.,
those with only 256 kB RAM). For example, forward CFI stores an allowlist of legitimate branching
targets for every indirect call site. Backward CFI maintains a separate shadow memory to detect
return address corruption. DFI needs to instrument every memory access instruction and check
the allowlist to detect unauthorized memory accesses, thus incurring high overhead. Moreover, to
provide comprehensive protection, we need to simultaneously enforce these properties, stacking
up the pressure they place on device resources. For example, if we enforce the DFI proposed in [16]
and the CFI proposed in [42], assuming they do not conflict with each other, the overall memory
overhead would be 50% plus 7.5%.

In this work, we propose a novel approach named Bitmap-Based Security Monitoring (BSM).
Our solution is partly inspired by the remote attestation-based solutions [4, 70]. This previous
work, however, works in offline mode, only detecting attacks after the fact. Attestation-based
solutions generally involve the collection and transmission of runtime data to a remote backend
server, which subsequently performs an “offline” verification to ascertain the legitimacy of the
execution. BSM, on the other hand, is online and does not require any backend server. It implements
online security monitoring mechanisms based on the design of a compact, bitmap-based runtime
data structure, which is a unified whitelist for both CFI and critical DFI. BSM enforces CFI by
performing checks at indirect control-flow transfers and enforces DFI protection based on a data
watchpoint mechanism, which performs checks only when the write operation occurs, avoiding
the expense of checking all potentially risky writes. Each bit in the bitmap represents a valid
operation, whose index is determined by an address tuple (�, �). Here, a hash function is applied
to � and � to distribute the tuple to a random index of the bitmap. This bit indicates whether
this address tuple should be allowed or not. We will later show that such a tuple is sufficient to

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

https://doi.org/10.1145/3672460

BSM for Deeply Embedded Systems 192:3

represent both control-flow transition and dataflow, thus covering the aforementioned CFI and DFI
proposals. Depending on the firmware, the size of the bitmap is adjustable to minimize collisions.
This novel data structure is compact compared with existing solutions, especially when CFI and
DFI are deployed simultaneously, which is critical on deeply embedded devices, which have strict
resource limitations.

The allowlist has to be isolated in a secure place where a memory corruption cannot touch it.
This can help to ensure its integrity (cannot be modified by vulnerable code) and confidentiality
(cannot be leaked to vulnerable code). To achieve this goal, we leverage the hardware-enabled
Trusted Execution Environment (TEE) for MCU devices, such as MultiZone [38] on Reduced
Instruction Set Computer (RISC)-V MCUs or TrustZone [7, 52] on Advanced RISC Machine
(ARM) Cortex-M MCUs. By placing the allowlist in the secure world, we can update it directly by
utilizing a secure API in the normal world. The protected firmware, while running in the normal
world, reports security-critical operations to the TEE secure world, where security checks are
performed.

Due to our limited resources, the size of the bitmap is constrained.This constraint, combined with
the use of a hash algorithm, introduces the possibility of collisions. To detect potential collisions,
we perform offline analysis. If collisions are inevitable, our tool automatically extends the bitmap.
Specifically, for potential CFI-induced collisions, we treat all return instruction addresses and
indirect calls in the program as possible A values in the tuple (�, �) and all addresses of attack-
useful functions and Return-oriented Programming (ROP) gadgets as possible B values in the
tuple (�, �). We then generate a series of illegal tuples by computing the Cartesian product of
these two sets. For potential DFI-induced collisions, we generate illegal tuples for each critical
variable using all other critical store instructions (not allowed to write the chosen variable). For
each element in the illegal tuples for both CFI and DFI, we compute the illegal index using the same
hash function. Finally, we check these illegal indexes against the allowlist record. If a collision is
found, we increase the bitmap size, regenerate the allowlist, and repeat the previous step. Otherwise,
the allowlist is collision-free for both CFI and DFI.

We implemented the proposed system on an ARM Cortex-M-based MCUwith TrustZone support.
Using BSM to deploy both CFI and DFI, our prototype incurs 32.56%, 10.79%, and 2.09% overhead
in terms of RAM, FLASH, and performance. We also measured the power consumption with and
without BSM. The results show that the average overhead of power consumption is only 0.59%.

In summary, we made the following contributions:

—We propose a novel bitmap-based framework, which offers online enforcement for both CFI
and critical data integrity while keeping the overhead acceptable for deeply embedded devices.

—We have an offline analysis process for the bitmap storage structure to avoid conflicts, and we
store the bitmap in TrustZone to ensure its integrity and confidentiality.

—We have implemented our idea on an ARM Cortex-M-based MCU. Our evaluation results
demonstrate a significantly lower overhead when compared to traditional solutions, high-
lighting the efficiency and effectiveness of our approach.

2 Background

Deeply Embedded Systems. Deeply embedded systems are designed to perform a determined set of
specific tasks, usually on low-c-cost, high-reliability platforms with severe resource limitations [34].
For example, some battery-powered embedded systems can get a fresh battery charge daily, but
others must last months or years on a single battery [46]. Following the categorization proposed
by Abbasi et al. [3], we can recognize deeply embedded systems as a subset of embedded systems
having the following characteristics: (1) they are powered by an MCU, which integrates a processor,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:4 A. Peng et al.

memory, and other peripheral devices onto a single chip; (2) they have a minimal OS (such as Free
Real-Time Operating System (FreeRTOS)) or no OS at all (i.e., baremetal); and (3) the application
lack user interface or have uncommon ones to fit the constrained memory size, computation power,
and energy consumption. Consequently, in such systems, all resources that are deemed irrelevant
to the tasks they need to perform are eliminated to minimize production costs.

Typically, they consist of microcontrollers that are low-end processors with integrated memory,
performing specific operations in a deterministic manner and collaborating to accomplish complex
tasks. For example, modern vehicles can have more than a hundred individual computing units
(consists of microcontrollers, also called electronic control units), which are individually customized
to control different functionalities of the vehicle [47]. Moreover, such systems are broadly embedded
in various application scenarios, such as small home [44], Industrial Control Systems (ICSs)
[24], automotive [47], medical devices [69], and other fields.

Since these systems closely interact with the physical world, attacking them can cause not
only software errors but also physical damages. For example, in smart cars, embedded devices
control the vehicle’s behavior, ranging from non-critical infotainment systems to extremely critical
driver assistance systems [47]. If these systems fail, they may endanger people’s lives. In addition,
the famous “Stuxnet” attack infected surveillance and data acquisition systems [29] of nuclear
centrifuges, causing significant damage to Iran’s nuclear program. Moreover, researchers have
demonstrated various exploitation methods against such deeply embedded systems in industrial
control applications [2, 33, 35].

Data Watchpoints. Data watchpoints are a very common debugging feature. With this feature,
whenever an interesting variable is accessed, the debugger halts the execution and notifies the user.
This function is widely supported by mainstream MCUs (e.g., ARM [52], Microprocessor without
Interlocked Pipeline Stages (MIPS) [50], RISC-V [67]) at the hardware level. For ARM Cortex-M
MCUs, data watchpoint is implemented by the Data Watchpoint and Trace Unit (DWT), an
ARM intellectual property for data watchpoint, PC tracing, system profiling, and many helpful
debugging functions.

DWT monitors a contiguous memory region based on the access types (e.g., read, write, or
execute). The region is configured via a pair of comparators. In our experiment board, 16 pairs of
comparators are supported, indicating that 16 memory regions can be monitored simultaneously. If
the monitored memory is accessed, the hardware halts the execution or generates a debug monitor
exception, depending on the configuration of the Debug Exception and Monitor Control
Register (DEMCR). We leverage the debug monitor exception mode in this work. On taking a
debug monitor exception, the hardware stores contextual information onto the pre-exception stack.
This operation is referred to as stacking, and the structure is referred to as a stack frame. The stored
contextual information includes R0–R3, R12, R14, xPSR registers, and the return address, along with
the floating point registers (if the floating point unit is active). Since the location of the stack frame
is known, this contextual information can be obtained and manipulated in the exception handler
(i.e., DebugMon_Handler).

ARM TrustZone. ARM TrustZone provides a hardware-based TEE for ARM processors. The feature
divides the system into two execution environments: the secure world and the non-secure (or
normal) world.The processor is time shared by the two environments. Correspondingly, the system’s
resources (such as memory and peripherals) are split into secure ones and non-secure ones. When
the CPU is in the normal world, the CPU can only access non-secure resources. When the CPU is
in the secure world, the CPU can access all the resources.

The transition between the secure world and normal world is realized in two ways: secure calls
or exceptions. Secure calls allow the normal world firmware to invoke functions implemented in

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:5

the secure world via well-defined entry points. The entry is guarded by a special instruction called
Secure Gateway (SG). Exceptions can also cause cross-world transitions depending on whether
they are banked or not. Banked exceptions have separate resources in both worlds to handle their
own exceptions, so world transition is unnecessary. Non-banked exceptions such as debug monitor
exception can only target one security state. As such, by configuring the DEMCR [52], we can
also force the debug monitor exception to always target the secure world, even if the processor is
currently running in the normal world.

ARM TrustZone ensures that code and data in the secure world cannot be affected by the normal
world, even if vulnerabilities allow an attacker to achieve arbitrary execution there. Therefore, we
store the allowlist needed for security monitoring in the secure world, where it cannot be tampered
with even if memory protection is compromised.

3 Overview
We first describe the threat model we consider in this work. Then, we provide an overview of the
design of the proposed system.

Threat Model. We consider an attacker who can send data over all Input/Output interfaces (e.g.,
network and Universal Asynchronous Receiver/Transmitter (UART)) of the target device.
Therefore, they could craft and send manipulated input to trigger vulnerabilities in the firmware. In
this work, we specifically consider vulnerabilities caused by memory errors that can be leveraged
to violate the control flow or dataflow of the firmware execution. For example, the attacker can use
write-what-where style vulnerabilities to overwrite a function pointer to hijack the control flow.
They can also launch data-only attacks by overwriting a critical variable to indirectly influence the
program logic. This is aligned with existing research on CFI and DFI [6, 56, 70].

We assume the hardware is equipped with a data watchpoint unit and a TEE environment. The
former is a common debugging unit available in many MCU chips (such as ARM [52], RISC-V [67],
and MIPS [50]), while the latter has already been deployed in the current generation of ARM-based
and RISC-V-based chips. We also assume the trusted software in the TEE is bug-free and isolated
from the normal world firmware, as important metadata, such as the allowlist, is stored there.
Considering the small code base of the TEE-side software and the limited attack surface, we believe
this is a reasonable assumption well accepted by existing TEE-based work [4, 56, 70]. We do not
consider physical attacks, such as connecting to a Joint Test Action Group debugger to re-program
the firmware. Finally, we assume our compiler passes are free of bugs.

System Overview. BSM, a bitmap-based security mechanism, is designed for deeply embedded
devices. It leverages the TEE and the data watchpoint feature to efficiently enforce CFI and DFI for
critical variables. While the concept is applicable to any chip with a TEE and data watchpoint unit,
our implementation focuses on ARM Cortex-M-based devices due to their widespread usage.
BSM comprises a compile-time phase and a runtime phase, as illustrated in Figure 1. During

the compile-time phase, our custom Low Level Virtual Machine (LLVM) pass performs static
analysis (Sections 4.1 and 4.2) to extract tuples that form an allowlist for control-flow transitions
and data accesses. These tuples are then encoded and stored in a compact bitmap-based allowlist in
TEE. Furthermore, to streamline the collection of these tuples, BSM instruments the firmware to
enable the gathering of control-flow transition tuples. Additionally, BSM utilizes the DWT hardware
feature to automatically monitor critical data access and collect corresponding tuples. To achieve
this, our LLVM pass performs an automatic analysis of user-defined critical variables, expands the
set of critical variables to include those that propagate into them, and remaps them to a memory
range monitored by the DWT. During the runtime, when the program encounters an indirect
branch, it carries the collected tuple (consisting of the source instruction and destination address)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:6 A. Peng et al.

Control Flow

Transition

Interceptor

Critical Variable

Access

Interceptor

Extract an allowlist via static analysis

Compile-time Phase Run-time Phase

Source Code

LLVM IR

Control Flow

Instrumentation

Critical Variable

Remapping

Firmware
Static

Analysis

Normal World

Hash

Secure World

Bitmap-based

Allowlist

lookup

(critical_var, write_ins)

(indirect_src, dst)

Fig. 1. BSM overview. IR, intermediate representation.

and transitions to the secure world for further validation (Section 4.1). When the program accesses
a critical variable, a debug monitor exception is triggered, prompting the handler to dynamically
extract the tuple (Section 4.2). Both CFI and DFI tuples are then passed from the normal world
to the secure world, where the same hash algorithm is applied to obtain an index (mapping it
into a bit) for each tuple. If the corresponding bit in the bitmap is set, the operation is considered
legitimate. Otherwise, it is deemed illegal, and the context is recorded for postmortem analysis.

4 Design
In this section, we first elaborate on how to collect the runtime CFI tuples andDFI tuples, respectively.
Then, we explain the TEE-side design that uses a bitmap-based allowlist to perform online security
checking based on the obtained tuples.

4.1 CFI
There are generally three types of control-flow transfers in a program: direct jumps/calls, indirect
jumps/calls, and function returns. Among them, attackers are particularly interested in indirect
jumps/calls and function returns since overwriting the target address leads to the control-flow
hijacking of the program. This is because the target addresses of these transfers are not hardcoded
but determined at runtime, making them susceptible to manipulation.

According to the ARM instruction set, indirect jumps/calls are implemented by the BLX Rx
instruction where the register Rx specifies the target address. The function returns use the POP
{..., PC} instruction to pop a previously stored return address on the stack to the program
counter PC. The attackers can leverage the BLX or POP instruction to redirect the control flow to an
attacker-chosen target by manipulating the content of related registers or memory. We mark these
exploitable instructions as critical instructions. To mitigate such control-flow hijacking attacks, our
CFI enforcement scheme does a legitimacy check before each critical instruction to ensure that the
firmware can only transfer to a legitimate target.

Extracting Valid Tuples. To verify the legitimacy of a control-flow transfer at runtime, we must
know which targets are valid. For example, before executing the BLX R0 instruction, we must know
the set of legitimate values of '0. We call the address of the indirect jump site (i.e., the address of
the BLX R0 instruction) the source, and its target (i.e., the value of R0) the destination. Therefore,
each valid control-flow transition is encoded as a tuple comprised of a source and a destination.
We use this information to check the legitimacy of indirect control-flow transfer at runtime.

To obtain such information, our approach begins by constructing a call graph, which extracts a
list of callers and callees for each function. However, constructing an accurate call graph poses

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:7

challenges, particularly in the presence of indirect function calls. To address this issue, our call
graph building process leverages type-based alias analysis, which aids in resolving potential targets.
More specifically, when encountering a BLX Rx instruction, we utilize the function type, similar to
the forward CFI implementation in LLVM [49], to identify all possible targets. Here, we consider
two function types to be identical if they have the same number of parameters, parameter types
(such as structure or pointer), and return value types. As a result, for forward indirect branch
instructions, their targets can be directly extracted from the constructed call graph. For backward
indirect instructions such as return instructions, their potential return targets are determined to be
the corresponding call site in the respective callers.

Instrumentation. To validate each indirect jump/call or function return at runtime, we need to
insert instrumentation before the relevant BLX and POP instructions to pass the tuples to the
CFI validation module. To protect the validation module and the allowlist, we place them in the
TrustZone secure world so that they can only be accessed by the corresponding trampolines.

4.2 Critical DFI
Data integrity properties can be broadly categorized into two distinct aspects: read integrity and
write integrity. While read integrity safeguards against unauthorized memory read operations, write
integrity prevents unauthorized alterations to memory locations. The concept of write integrity
was first introduced in Write Integrity Testing (WIT) [5]. In the context of our approach, write
integrity is of greater significance than read integrity for several reasons: (1) DOP attacks [39] rely
on violations of write integrity. (2) Read accesses occur more frequently than write accesses [15],
making their protection more costly and less practical. (3) Prior research on general platforms has
demonstrated that enforcing write integrity incurs substantial overhead. For instance, WIT [5]
reported a performance overhead of approximately 5–25% for the SPEC benchmark. By minimizing
this overhead, our approach enhances the likelihood of practical deployment. However, reducing
overhead through selective write integrity enforcement is not a non-trivial task. For a given critical
variable, its attack surface encompasses all write instructions apart from the legitimate instructions
that are authorized to modify it. Consequently, a solution must ensure that modifications made by
all write operations are scrutinized. This stems from the inherent nature of the C/C++ programming
language, which allows any memory write instruction to potentially alter the value of any variable.
This poses challenges in designing defense mechanisms, as we must monitor all memory write
instructions even if we only protect critical variables.

Our solution attempts to perform security checks only when necessary to minimize the instru-
mentation overhead. By relocating all critical variables to a contiguous memory region, we can
leverage a common debug feature to centrally monitor all semantically critical variables. As a result,
there is no overhead until a critical variable is being written at runtime. When this occurs, the
hardware automatically traps the execution, and the legitimacy of the trapped write instruction is
verified. In essence, our approach avoids expensive dataflow tracking by involving hardware to
passively monitor access to critical variables.

At a high level, our first step is to extract the critical variables. Determiningwhich variables should
be selected generally requires domain knowledge of specific application semantics (see Section 4.2.1).
Next, we extract all legal write instructions for each critical variable, and this information will
serve as allowlist in the bitmap. Then, we remap the critical variables in a continuous range of
memory, which is write-monitored by data watchpoint (i.e., debug monitor mode of ARM DWT
mechanism). In our design, we split monitored memory into three sub-regions: meaning that a
critical variable can appear in any of the stack, heap, or global memory. Finally, we re-organize the
extracted information into tuples (�, �), where � represents the target critical variables to write to

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:8 A. Peng et al.

and � represents the its allowable write instructions. These tuples will be encoded and stored in the
compact bitmap-based allowlist in TEE. As a result, once the program writes to a critical variable,
it will trigger a debug_monitor event and lead to the legitimacy checks against the bitmap.

4.2.1 Critical Variable Extraction. Full DFI is expensive and not viable on resource-constrained
embedded systems. To enable efficient data integrity, our approach is selective. Selective protection
of semantically critical variables can raise the bar for successful exploitation, e.g., a variable
indicating whether or not the user has been authenticated, or a variable in the syringe pump
program that controls the number of injections. Generally, selecting variables heavily depends on
application specific semantics and protection goals [15, 18, 70]. In our design, we assume critical
variables have been provided as such, either manually by the programmer using explicit annotations
or using an automated system. Determining which variables is critical and should be selected is
orthogonal to our work.

Our implementation relies on programmers to annotate an initial set of semantically critical
variables. This depends on domain knowledge of specific program semantics, which is not available
in a compiler. Based on these annotations, our compiler automatically extracts critical variables
using dataflow dependency analysis. This analysis has two steps: (1) expand the set of critical
variables and (2) associate critical variables with a specific memory allocation site. We use the
following expansion rules:

—E0A1 is a critical variable if it is annotated manually or identified as such by dataflow analysis.
For example, using __0CCA81DC4__((0==>C0C4(“2A8C820;”))) in the source code.

—? = &E0A1, then any dereference of the pointer ? is a critical variable. For example, ? = &E0A2,
then E0A2 is a critical variable. A pointer pointing to a critical variable is critical, and any
variable written to the pointer also becomes a critical variable itself.

—E0A3 = E0A1, then E0A3 is a critical variable.
—E0A4.<4<14A = E0A1, then the structure variable E0A4 is a critical variable, and all the member
of E0A4 are also regarded as critical variables.

The process of expanding critical variables runs recursively as long as it finds new critical
variables. Due to the limitations of the data watchpoint mechanism, what we can obtain at runtime
is just a specific memory address (NOT equal to the specific critical variable). Therefore, we need
a mapping relationship between critical variables and memory allocations. However, a memory
allocation could lead to many variables in the LLVM Intermediate Representation (IR) code.
This is because the LLVM IR uses single static assignment format to represent instructions, where
each variable is assigned only once. For example, a piece of source code is shown in Listing 1.

int a[2];

a[0] = 1;

a[1] = 2;

Listing 1. Example of Source Code

After transforming it to the LLVM IR codes, it can be shown in Listing 2.
If we annotate the variable “a” as critical, then three critical variables can be expanded through

dataflow analysis, which are respectively {%a, %1, %2}. However, only %a is actually allocated in
memory, and the other two variables %1 and %2 share the same memory with the variable %a.
Therefore, we can monitor all three variables as long as we monitor the memory of variable %a. We
regard memory-allocated critical variables as the root variables. Based on the dataflow dependency

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:9

%a = alloca [2*i32], align4

%1 = getelementptr inbounds [2*i32], [2*i32]*%a, i64 0, i64

store i32 0, i32*%1, align4

%2 = getelementptr inbounds [2*i32], [2*i32]*%a, i64 0, i64

store i32 1, i32*%2, align4

Listing 2. Example of Generated IR Codes

analysis, we can map all critical variables in the expanded set to the root variables. Note that one
critical variable could be mapped to at least one root variable. For example, a critical variable is the
parameter ∗3BC of the<4<2?~ () function, could map to multiple root variables considering the
different calling contexts. In the end, the compiler has determined the full expanded set of critical
variables and their memory allocations. The process only requires the programmer to focus on
a small number of critical variables, reducing the difficulty and effort of the manual work, and
making it less error-prone.

4.2.2 Legal Tuples Extraction. The key insight of our approach is that critical variables can only
be modified by a “legal” write instructions. For each critical variable, we use dataflow analysis
to extract a list of tuples (�, �) to represent legitimate operations. Inside the tuple, � represents
the identity of the target variable (each critical variable has its own identify after analysis), and �
represents the address of the STR instruction. Using the LLVM framework, we can obtain a list of
tuples (2A8C820;+0A, BC>A4�=BC) for each critical variable. All memory operations on variables are
ultimately reflected on root variables. Therefore, combined with the mapping relationship between
critical variables and the root variables, our compiler records legal store instructions for all root
variables. We represent it as {A>>C+0A : BC>A4�=B!8BC}. Considering the example given in Listing
2, we could obtain the operations on root variables as {%0 : [8=B3, 8=B5]}, or get two tuples as
(%0, 8=B3) and (%0, 8=B5). Although the obtained instructions are represented as IR format, we
further get its corresponding “legal” machine instruction address by doing an analysis on the LLVM
backend and obtaining its offset in a function.

4.2.3 Critical Variables Remapping. We configure the DWT mechanism to monitor a continuous
memory space, where memory access initiated by store instructions (e.g., STR instructions) will
trigger debug monitor exception. In the exception, we can perform the legitimacy check. To make
this happen, we need to remap the dispersed memory allocations of the critical variables into the
continuous monitored memory region. There are three types of critical variables to remap: global,
stack, and heap variables. Specifically, we first reserve and configure a contiguous memory space
whose starting address is 10B4_033A , the first " bytes are used to manage global variables, the
next # bytes are used to manage stack variables, and the last bytes are used to manage heap
variables. The values of" , # , and can be adjusted according to the requirements of the specific
applications.

Critical Global Variables. We sequentially replace global memory allocations to move them to the
monitored memory space and maintain 4-byte alignment. Meanwhile, we also record the size of
each variable and the offset relative to the starting address 10B4_033A . Then, each global critical
variable is recorded as 〈E0A�� : {10B4_033A, > 5 5 B4C}〉. In ARM Cortex-M series devices, there is no
Address Space Layout Randomization (ASLR) mechanism. Therefore, given a specific address
at runtime, it is easy to calculate the offset relative to the 10B4_033A . This helps to identify which
critical variable (varID) is accessed.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:10 A. Peng et al.

void funcA(){

int __attribute__(“critical”) var1=0;

int __attribute__(“critical”) var2=0;

int non_critical_var = 0;

funcB(&var1);

funcC(&var2);

}

void funcB(int *ptr){

*ptr += 1;

}

void funcC(int *ptr){

int __attribute__(“critical”) var3=0;

var3 += *ptr;

*ptr += var3;

}

Invoking funcC

funcA_pc

var1

var2

old_sec_ebp

old_sec_ebp2

funcB_pc

var3

tag

tag

Invoking funcB
sec_ebp

sec_esp

funcA_pc

tag

var2

old_sec_ebp

var1

sec_ebp

sec_esp

Fig. 2. Remapping stack variables to the secure stack. The secure stack only grows the function defines
critical stack variables.

Critical Variables on the Stack. Stack allocations of critical variables are replaced by allocations in
a memory block in the monitored memory. To identify and distinguish different stack variables, we
build a secure stack in the monitored memory (see Figure 2).The secure stack is managed by a secure
frame pointer (sec_ebp) and a secure stack pointer (sec_esp). To manage critical stack variables
used in the function, we first save the >;3_B42_41? , the function address 5 D=2_?2 , and a C06 on the
secure stack. Specifically, critical stack variables are recorded as 〈E0A�� : {5 D=2_?2, > 5 5 B4C}〉 after
static analysis.

When a monitored stack variable is accessed at runtime, we need to identify which variable
it refers to (i.e., its varID). However, the varID is not directly provided—instead, we can only get
the accessed memory address at runtime. Therefore, we need to map the memory address to the
corresponding varID. To achieve this mapping, we introduce a secure stack as shown in Figure 2.
When a critical stack variable is accessed at runtime, and its address (addr) is obtained, we can
determine its varID by obtaining its function and the offset. Specifically, we use the following
three steps.

(1) If addr is greater than 10B4_033A +" , we know it refers to a stack variable. We then check if
addr is greater than sec_ebp.

(2) If yes, we use B42_41? + 4 to obtain its function address (func_addr) and 033A − 41? − 12 to
get the offset.

(3) If no, we search for the “tag” field (a magic number) starting from addr. Once found, the corre-
sponding >;3_B42_41? can be easily located because the offset between “tag” and >;3_B42_41?
is fixed as 8. We then obtain func_addr and offset like in step 2. However, if an attacker can
control the input and control the value of “tag,” or the normal program input value equals the
value of “tag,” these situations may interfere with our analysis and cause errors in positioning

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:11

variables. Our design prevents this attack by two steps: (1) Since each write to the monitored
memory will trigger an interrupt, in the interrupt logic, we extract the current write value
and determine whether it is “tag.” If so, we label the memory address in a global array. (2)
During the “tag” search, if the value of the address is found to be “tag,” we will compare
whether the address has been marked in the global array. If so, we skip it and keep searching
“tag.” In fact, the probability that the value of the program equals the value of “tag” is very
small, and in our experiment, we did not encounter such situation. Fortunately, even if we
do encounter this situation, we can handle it well.

For example, the statement ∗?CA+ = E0A3 in 5 D=2� marked by the red circle accesses a local
variable at offset 4 of 5 D=2�. By running our prototype, we can correctly identify all its metadata
(5 D=2�, > 5 5 B4C). Finally, we can match the obtained metadata to the varID based on the statically
obtained record (i.e., 〈E0A�� : {5 D=2_?2, > 5 5 B4C}〉).

Moreover, the design of the secure stack is memory-efficient in the sense that it does not use
(much) more memory than the baseline. Only when there is a critical stack variable memory
allocation in the function will it increase the secure stack. As shown in Figure 2, when function
5 D=2� is called, the secure stack does not grow. This is because that the 5 D=2� does not define any
new critical stack variables, even though it manipulates the critical variable E0A1. Only when the
function defines the critical stack variables the secure stack will grow. Note that when the critical
variable is allocated in the secure stack, there is no need to allocate the memory on the original
stack. When the function returns, the secure stack will also restore the secure stack frame.

Critical Variables on the Heap. We also remap the critical variables on the heap to the monitored
addresses. When the program allocates an =-byte heap variable, we call a wrapper function for
heap allocation and actually allocate = + 4 bytes. The additional 4 bytes are used to tag the identity
of the variable. Then, we represent the heap variable as 〈E0A�� : C06��〉 after static analysis (tagID
is specific to the allocation site, which is generated after static analysis). It is easy to identify a
heap variable access in the runtime. When the address of the variable is greater than the value of
10B4_033A +" + # , we can search the heap tag in the memory to obtain its identity.

4.2.4 Obtaining Runtime Tuples. The DWT feature supported by the ARMv8-M series devices
can be used to monitor a continuous range of memory, and any writes to the monitored memory
would trigger the execution of the interrupt handler, i.e., DFI_Validation_Module. In DFI_Valida-
tion_Module, we can obtain the stacked execution context through the SP register. The stacked
context includes R0-R4, R12, R14, xPSR registers, and the return address. However, based on the
stacked execution context, there are still two challenges in obtaining the exact tuple (�, �): the
exact address of STR instruction and the exact address of memory accessed.

¶ The DWT interrupt is asynchronous, causing a delay between a memory access event and
the execution context saving. For the following example, we assume the STR instruction at 0 × 04
triggered an interrupt. The hardware stacks the execution context and jumps into the DFI_Valida-
tion_Module. The return address obtained in the DFI_Validation_Module may not be 0 × 08. Instead,
it could be 0 × 0a or 0 × 0c due to the delay. It poses a challenge to obtain the exact instruction
that triggers the interrupt. Especially if there is a branch instruction, the trapped return address
could be far away from the memory-accessing STR instruction. Based on our observation, there
is a delay of at most two instructions. This also agrees with the pipeline design of the Cortex-M
core; the manual [8] states explicitly that the maximum delay is two instructions (in Section 4.7).
As such, the address of the fault write instruction is within three instructions backwards along the
execution trace from the PC value obtained from the exception stack frame.

We address this challenge by injecting two NOP instructions (i.e., ("$+'0, '0)) after every
critical write instruction. As a result, the secure runtime only needs to linearly search for the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:12 A. Peng et al.

0x04 STR R0, [MEM_ADDR]

0x08 MOV R0, R1

0x0a SUB R0, 4

0x0c LDR R1, [MEM_ADDR]

0x0e BL Function_XXX

Listing 3. Instruction delay in DWT trigger.

nearest write instruction (e.g., STR) backwards from the address obtained from the exception stack
frame. Finally, the instruction address obtained can represent the original STR instruction. This
can also help to detect illegal critical variable modification from non-critical stores, because if we
do not find the NOP instruction by forward searching the STR instruction, we then know it is an
illegal modification from non-critical stores.

· It is challenging to infer the accessed memory address only with the stacked context. Currently,
the hardware does not support to explicitly provide the exact accessed memory address. As a
solution, we instrument before the critical STR instruction that writes the critical variable. We first
obtain its targeted memory address and save it in a TEE protected memory called CriticalAddr. Then,
the address can be directly obtained in DFI_Validation_Module. Note that we do not instrument
before all STR instructions. Instead, we only instrument the define site (we regard the instruction
that modifies the critical variables as define site). There are two benefits: (1) Only relatively few
define sites (STR instructions) need instrumentation, making it lightweight. (2) Transition to secure
world is performed only when necessary, if no critical variables involved, there is no overhead.

4.3 Bitmap-Based Allowlist Construction and Storage
To accommodate the limited hardware resources on embedded devices, we propose a space efficient
storage mechanism of legitimate operations (e.g., indirect branch, data store, and so on). This
mechanism compresses and records legitimate operations into a bitmap structure, which we call
allowlist. First, to extract the allowed tuples (�, �), we perform offline analysis to capture (1) the
source address and destination address tuples for each legitimate indirect branch (i.e., forward
indirect branch and backward indirect return) in the control-flow graph and (2) the STR instruction
address and its allowable write targets tuples for each legitimate operation on critical variables.
Then, each pair is mapped to a single bit in the allowlist using an efficient hash algorithm based on
Cantor Pairing [17]. Finally, the complete allowlist of the program will be stored in the TEE, e.g.,
the ARM’s TrustZone, to ensure confidentiality and integrity.

As a result, the protected program can generate the aforementioned tuple at runtime and jump
into the corresponding validation module. Specifically, to enforce CFI, we instrument a secure
function call (via SG) before indirect branch instructions in the normal world. The function takes
two parameters, one is the current instruction address, the other is its destination address. It will
then switch to the secure world, transferring the tuple generated in the normal world for further
validation. To enforce DFI, we first configure the SDME bit of DEMCR register [52] so that the
exception can be directly delivered to the secure-world handler. Specifically, the normal world
debug monitor events (i.e., critical variable writes) are processed by the secure world handler
DFI_Validation_Module. Then, in the validation module, it automatically extracts the tuple (i.e.,
the responsible STR instruction and its write target variable ID), which is further converted to the
allowlist index for further validation. Finally, we check the index against the allowlist. If there
is a record, then the operation (indirect control-flow jump or data store) is legal; otherwise, the
operation is illegal.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:13

To construct and verify against the allowlist, we take the Cantor Pairing algorithm as the initial
step within our hashing mechanism. The Cantor Pairing algorithm is simple and relatively effective
compared with traditional hash algorithms. It only contains two multiplications and three additions.
However, it can uniquely map a pair of natural numbers (�, �) to another natural number #
(# = �0=C>A%08A8=6(�, �)). To map the index within a specific range, it is required to do a modular
operation on the mapped index (i.e., 8=34G = #%�;;>F!8BC_(8I4). The simplicity of the algorithm
can significantly reduce the runtime overhead, thereby reducing the impact on the normal function
of the program.

Preventing Collisions in the Bitmap. Collisions are common in hash algorithms. If a collision happens,
an invalid control-flow transition or memory access might result in an address tuple, which
generates a valid bit in the bitmap when hashed. Attackers can potentially take advantage of the
hash conflict to evade detection. It is clear that the larger the bitmap is, the less the chance of
conflict would be. However, we have limited memory available and cannot grow the bitmap by
much. Therefore, we do offline analysis to prevent collisions.

For potential collisions caused by a CFI attack, we regard all the addresses of POP {.., PC} or
POP {.., LR} instructions and indirect calls in the program as possible � values and took all the
addresses of functions useful in attacks and ROP gadgets as possible B values. Then, we compute
the Cartesian product on these two sets to generate a series of illegal tuples (�, �). For potential
collisions caused by DFI, consider an example:<4<2?~ (3BC, BA2, =), where 3BC is the memory of
critical variable, and the = is the dynamic size. Now suppose that due to a program bug, the value
of = exceeds the size of 3BC and reaches another critical variable �. If an index collision exists in this
situation, the critical variable � may be modified illegally without detection. To avoid the collision,
for each critical variable, we then use all other critical store instructions (not allowed to write the
chosen variable) to generate the illegal tuples (�′, �′).

For each element in the illegal tuples of both CFI and DFI, we calculate the illegal index with the
same hash function. Finally, we check these illegal indexes with the record in the allowlist. If there
exists a collision, we increase the bitmap size, regenerate the allowlist, and do the previous step
again. Otherwise, the allowlist is collision-free for CFI and DFI.

4.4 Runtime Validation
After obtaining the legal tuples with the static analysis (from CFI and DFI), the next step involves
encoding and storing them in a bitmap-based allowlist. This process entails applying a hash
operation to the address tuples and mapping each tuple to an index in the allowlist, setting the
corresponding bits to 1. During runtime, any security-sensitive operations, such as indirect branch
transfers or writes to critical variables, will trigger legitimacy checks within the TEE. Within the
TEE, we extract the tuple (�, �) either directly from the parameters of secure API (e.g., in the case
of CFI) or infer it from the stacked context (e.g., in the case of DFI). Subsequently, we map the
tuple to a bit using the same hash calculation and verify it against the constructed bitmap. If the
corresponding bit is set to 1 in the allowlist, the transfer is considered legal. Conversely, if the bit
is not set, the transfer or memory access is unexpected. We regard this as a potential attack and
generate an alert. We also record the execution context of the stack and the registers, which can be
used for offline analysis to locate the root cause. The user can also configure what to do depending
on the specific scenario, including aborting the program, dropping privileges, or just recording
the alert.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:14 A. Peng et al.

5 Implementation
We have implemented a prototype of BSM based on LLVM 10.0 [49] and OAT [70]. At a high level,
BSM can be divided into four components: (i) Static analyzer: For CFI, we extract the function
call graph and conduct a type-based indirect call target analysis. For DFI, we conduct a dataflow
analysis to extract a set of critical variables. (ii) Allowlist extractor: We analyze the call graph
and iterate the operation of critical variables to obtain legal tuples. Then, we map these tuples to
form an allowlist. (iii) Instrumentation: We instrument critical instructions (insecure control-flow
transfers) and remap critical variables to a contiguous monitored memory. (iv) Runtime validator:
We obtain the runtime tuple, then calculate the index (hash) of the tuple, finally look up the hash
value in the allowlist, and check whether the operation is legal.

5.1 Static Analyzer
For CFI, we first obtain the call graph through an LLVM pass. It identifies all possible targets for each
function call statement. For each function, it generates a list to store callers and callees. For direct
calls, we can directly determine the relationship between caller and callee; for indirect invocation,
the possible target of the indirect invocation statement is determined through type-based analysis.
That is, we assume that any type-matched function is a legal target. Therefore, we generate an
over-approximated call graph.

For DFI, we first need to specify the initial set of critical variables using annotations as follows:

8=C__0CCA81DC4__((0==>C0C4 (“2A8C820;6”)))E0A = 1,

We start from these annotations and then automatically propagate and expand the set of critical
variables.

5.2 Allowlist Extractor
For CFI, we extract the tuples from each call site and called function based on constructed call
graph. Recall that building the call graph involves type-based alias analysis. Then, we transform
the tuples with the Cantor Pairing function to form an allowlist, where each tuple will have a
record in it.

For DFI, each critical variable is mapped to a varID, and we extract all the define instructions
of the critical variable in the IR layer. Then, we locate the corresponding machine instructions
(different from IR instructions) with a Machine IR layer pass. Specifically, we get the related machine
instruction offset of the function. Finally, the varID and the address of define/store instruction are
collected to form an allowlist. The results of this step make up a unified allowlist, which contains
legal critical instruction transfers and legal critical variable operations.

5.3 Instrumentation
For CFI, we instrument the critical transfer instructions. The instrumentation is implemented in
an LLVM backend pass. It can be divided into three steps: (1) collect all potential attack targets
(i.e., indirect calls/jumps and function returns) in all functions, (2) instrument a trampoline (secure
API call via SG) before each indirect call/jump and function return instruction, and (3) pass the
source and destination address information as arguments to the SG function call, which would be
directly used in the TrustZone. The BSM iterates through each instruction. Each time it encounters
an indirect call or function return statement, it first backups registers R0 and R1 (because these
registers are used to pass arguments). Next, pass the source address to R0 and the destination
address (i.e., the return address on the stack or Rx in BLX Rx instruction) to R1 as the second
argument. Then, call the SG function to switch to the TrustZone.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:15

For DFI, we first annotate the critical variables manually and then use a dataflow analysis to
obtain an expanded set of critical variables. Then, we remap all critical variables (stack, heap, and
global variables) to a contiguous memory area configured with DWT. Besides, we instrument a
trampoline function to obtain its memory address for each definition of critical variables. After the
instrumentation step, we are able to capture the tuple (�, �) during the execution of the application.

5.4 Runtime Validator
For CFI, once the instrumented trampoline is called, the program switches to the secure world.
In the secure world, it applies a Cantor Pairing algorithm with two parameters (representing the
source and the destination) to calculate a hash (index) of the bitmap. Then, the validator module
checks whether the allowlist has the record. For DFI, at runtime, any write to a critical variable
would trigger a hardware interrupt event. Then, it leads to the execution of DebugMon_handler,
which obtains the corresponding triggered instruction based on the saved execution context.
Meanwhile, the value of the accessed memory is then directly obtained in DebugMon_handler if it
is an critical store. Finally, we can get a tuple (�, �), representing the accessed memory address
and the corresponding instruction. As a result, based on the obtained tuple, BSM can check its
legitimacy with the prepared allowlist.

6 Evaluation
To evaluate our BSM mechanism, we chose the STM32L562E-DK, a widely used embedded develop-
ment board, as our reference device. This board is representative of the systems we aim to protect.
The STM32L562E-DK Discovery Kit is a complete demonstration and development platform for
ARM Cortex-M33 with ARM TrustZone and ARMv8-M mainline security extension core-based
microcontroller, with 512 kB of Flash memory and 256 kB of SRAM. Our evaluation aims to answer
the following questions:

—Q1: What is the performance overhead of BSM?
—Q2: How does the performance overhead of BSM compare to the state-of-the-art solution —
OAT?

—Q3: What is the memory overhead of BSM?
—Q4: What is the power consumption overhead of BSM?
—Q5: What are the security benefits of BSM?

6.1 Firmware Samples
There are currently no bare-metal benchmark programs that have annotated semantically critical
variables. Additionally, the device-specific nature of embedded programs necessitates substantial
manual effort to port each program to a particular development board, such as configuring hard-
ware interfaces. Note that this effort is not due to BSM ; once the firmware runs on a particular
board, the manual effort for implementing BSM is minor. Therefore, we selected some embedded
programs with practical application scenarios for evaluation. For comparative consistency, we
would have liked to migrate all five evaluation programs of OAT [70], because it is most similar
to what we do. Despite a non-trivial manual effort, we were able to successfully port only two
programs (namely Syringe Pump and Light Controller). The other three programs failed to be ported
because they used socket API for network communication, while our device does not support the
relevant API.

To increase the number of test objects to make the evaluation more comprehensive, we also
tried to port test programs used as benchmark from other work [4, 6, 19, 25, 31, 81], and we
successfully ported PinLock, PID Controller, and Steering Controller. In addition, we included

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:16 A. Peng et al.

Table 1. Critical Variables (CVs) in Programs

Program # Initial # Total Detailed ListCVs CVs

Syringe Pump 11 19 mLBolus, mLBigBolus, mLBolusStepIdx, mLBolusStep,serialStr, serialStrLen,
mLUsed, cmd, authenticated, motorDirPin, motorStepPin

Light Controller 7 11 method_start, method, memory_added_pattern,
device_routing, data, new_item, switch_pattern

PID Controller 4 8 Temp, TPID, PIDOut, TempSetpoint
PinLock 5 8 key_in, key, failures, unlock_count, lock_status

Steering Controller 8 12 inSteer, inMotor, inMode, motorPin, steerPin, ledPin, command, LEDstatus

CRC_Data 5 6 buffer_size, CRC_POLYNOMIAL_16B, CRC_INIT_VALUE,
uwCRCValue, uwExpectedCRCValue

RNG_MultiRNG 2 2 aRandom32bit, Counter
CRYP 4 10 AES_TEXT_Size, TIMEOUT_VALUE, AESIV, AESIV_CTR
OSPI 4 6 aTxBuffer, CmdCplt, address, step

RTC_Alarm 3 6 aShowTime, RTCStatus, stimestructureget

five more demo applications (namely Cyclic Redundancy Check (CRC)_Data, Random Num-
bers Generator (RNG)_MultiRNG, CRYP, OSPI, RTC_Alarm) from the official STM32CubeL5
repository [63]. Using demo applications for evaluation is common practice in related research
in embedded devices [19, 20, 82] due to the limited availability of open source firmware to test
with. In total, we evaluated BSM on 10 different test programs. These programs reflect the small
size that is typical in real-life application scenarios, such as ICSs and smart homes. The busi-
ness logic they provide includes semantically critical variables, as well as program control-flow
transfers, which is appropriate to validate our prototype. Their source code uses common C/C++
programming features (e.g., arrays, aliases, pointers, indirect jumps, and so on) and also some
complex algorithms such as SHA256. We compiled all the test programs using the default link time
optimization options.

In the following, we provide detailed introductions to these 10 programs. We also present the
number of critical variables we annotated, the total number of critical variables, and a detailed list
of variable names annotated for each firmware in Table 1.

—Syringe Pump [70] used in the medical and production fields. It can automatically perform
liquid injection without manual intervention, thus reducing manual burden. We manually
annotated 11 critical variables related to authentication, motor status, and injection amount.
Since they are critical to the injection action and the amount of injection. They were extended
to 19 critical variables automatically by static analysis.

—LightController [70] used in smart home. The user can switch a light on or off by sending a
command. We manually annotated seven critical variables related to operation commands,
such as on–off action and mode switching action. They were extended to 11 critical variables
automatically by static analysis.

—PID Controller [25] used in the industrial production field. It can adjust the input according
to the historical data and expected value, so that the system is more accurate and stable.
We manually annotated four critical variables related to historical data, which are useful for
guiding input to the program. They were extended to eight critical variables automatically by
static analysis.

—PinLock [19] used in the smart home. For example, it can be applied to the door lock. The
door can be unlocked only after entering the correct PIN code. We manually annotated

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:17

five critical variables related to user authentication and lock status, which are used for
controlling the lock. They were extended to eight critical variables automatically by static
analysis.

—Steering Controller [31] used in autonomous driving. It receives commands from the com-
puter to control the steering and moving/motoring of the autonomous vehicle. We manually
annotated 8 critical variables related to vehicle control, which were extended to 12 critical
variables automatically by static analysis.

—CRC_Data [58] used to calculate a CRC code based on HAL APIs (e.g., CRC peripheral
configurations). It involves computing a 16-bit long CRC code, which is stored in the variable
uwCRCValue. The computed CRC code is then compared to the expected CRC value, stored
in the variable uwExpectedCRCValue_reversed. We manually annotated five critical variables
related to CRC value and its configurations, which were extended to six critical variables
automatically by static analysis.

—RNG_MultiRNG [61] uses an RNG to generate 32-bit long randomnumbers based onHardware
Abstract Layer (HAL) APIs. It uses an 8-entry array aRandom32bit, which will be filled up
with 32-bit random numbers when a button is pressed by a user. The random numbers can
be displayed on the debugger in the aRandom32bit variable. We manually annotated two
critical variables associated with the storage of random numbers. No additional variables were
identified through static analysis in this program.

—CRYP [59] uses the cryptographic peripheral to encrypt and decrypt input data using Ad-
vanced Encryption Standard (AES) in chaining modes. We manually annotated 4 critical
variables related to encryption and decryption operations, which were extended to 10 critical
variables automatically by static analysis.

—OSPI [60] used to demonstrate how to erase a part of an OSPI NOR memory, write data in
memory-mapped mode and access to OSPI NOR memory in memory-mapped mode to check
the data in an infinite loop. We manually annotated four critical variables related to steps of
data processing, which were extended to six critical variables automatically by static analysis.

—RTC_Alarm [62] used to configure and generate an RTC alarm using the RTC HAL APIs, and
the current time is updated and displayed on the debugger in the aShowTime variable. We
manually annotated three critical variables related to time status, which were extended to six
critical variables automatically by static analysis.

6.2 Performance Overhead
To ensure the deployability of defense mechanisms, it is crucial to make them lightweight [72]. This
is especially important for MCUs, which are often equipped with limited resources. We measured
the execution time for each test program in the two settings: baseline and BSM (i.e., CFI and
DFI both enabled). We start the runtime measurement at the beginning of the main function
and stop it when the application exits. The results are shown in the Table 2. The exact trigger
counts of CFI validation and DFI validation are shown in the sub-columns “#CFI” and “#DFI.” The
sub-column “Overhead” shows the relative delay caused by BSM to the program executions. The
geometric mean is 2.09% when CFI and DFI are both enabled. We can observe that the delay is
acceptable even for programs running on resource-constrained embedded devices. Based on our
observations, the number of DFI validations is much lower compared to the number of CFI checks.
This can be attributed to the fact that (1) the legitimacy check for DFI is exclusively performed
during actual critical data accesses, eliminating the need for instrumentation and legitimacy
checks on all potentially risky write instructions; and (2) the legitimacy check for CFI is conducted
dynamically at runtime for every forward indirect jump and backward function return, resulting in
frequent checks.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:18 A. Peng et al.

Table 2. Performance Overhead

Program #CFI #DFI Baseline CFI and DFI Enabled Overhead
Execution Time (ms) Execution Time (ms) (%)

Syringe Pump 45,118 16 15,300 15,311 0.07
Light Controller 7,481 359 196 200 2.04
PID Controller 10,149 315 4,007 4,016 0.22

PinLock 3,347 786 69 74 7.25
Steering Controller 10,026 10 9,661 9,692 0.32

CRC_Data 4,411 7 445 455 2.25
RNG_MultiRNG 2,656 9 265 269 1.51

CRYP 39,823 42 7,879 8,038 2.02
OSPI 1,272 767 123 127 3.25

RTC_Alarm 4,979 6 410 419 2.20
Geometric Mean 7,130 53 907 926 2.09

In addition, we compare the performance overhead between OAT and BSM, as depicted in
Figure 3. We applied both OAT and BSM to each individual application. BSM performs online
legitimacy checks at indirect branches and critical data writes, whereas OAT relies on a backend
server for remote verification of operation legitimacy. It is important to note that, for OAT, the
remote server does not use the computation resources of the embedded device. Consequently, the
overhead introduced by the remote server component is not taken into account. Even so, BSM
reduces overhead compared to OAT, with an geometric mean of 2.09% in BSM versus 4.19% in
OAT, while offering immediate detection, and therefore stronger security. There are several factors
contributing to this improvement. Firstly, OAT must capture and record all branches to reconstruct
control-flow execution traces remotely and conduct legitimacy checks within a program, whereas
the number of branches (i.e., only indirect jumps) tracked in BSM is considerably smaller. Secondly,
OAT requires checks to be performed at both read and write sites of critical variables, whereas BSM
only performs legitimacy checks at write sites because it uses the DWT mechanism to implicitly
detect reads to critical variables. Additionally, it is worth noting that both BSM and OAT incur
the highest overhead on the PinLock project. This can be attributed to the complexity of the
employed hash function, specifically SHA256. This function frequently writes to a critical variable
(i.e., the memory holds the output hash value), necessitating the inclusion of a corresponding
legitimacy check.

6.3 Memory Overhead
Memory overhead is measured in two parts: RAM overhead and FLASH overhead. RAM overhead
refers to the extra memory needed to store the program state at runtime, while FLASH overhead
refers to the space needed to store the instrumented program itself. The result can be seen in Table 3.

RAMOverhead. To enforce the security schemes on the embedded device, BSM requires additional
RAM resources. The additional RAM overhead consists of two parts:

—Allowlist. BSM needs to deploy a bitmap in the program to store legal program behaviors,
which are generated by static analysis. Each legal tuple (A and B) maps to a bit in the allowlist
to represent a valid memory access (write_instruction, critical_variable) or a valid control-flow
transfer (indirect_source_instruction, destination_instruction). In our experiments, the default
allowlist size is set to 1 kB, which can represent 8,192 different legal behaviors. To avoid

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:19

Fig. 3. Comparison of runtime overhead for OAT and BSM.

collisions, we adjusted the size of the allowlist for each program by increasing the size until
no collisions were found.

—Monitored memory. BSM requires a piece of continuous memory to monitor the memory access
of all critical variables. Essentially, our design does not incur the cost of critical variables in
terms of memory overhead, because these variables in the original program will also occupy
the corresponding memory. After memory remapping, the original memory allocation is no
longer needed. However, we still include it in the memory overhead for its special usage.

The memory cost includes the size of all critical variables in the given application. We reserve
500 bytes by default because it is enough to handle the programs in our experiments. Our memory
consumption is about 1.53 kB in total, occupying 0.60% of the total RAM (256 kB). On the other
hand, compared with the existing method proposed by OAT (the whole memory footprint of the
measurement engine is less than 10 kB for the real embedded applications used in the evaluation
[70]), our method reduces runtime memory overhead by 84.7%, i.e., OAT costs 6.5 times as much
memory as our solution. The key factor leading to the distinction is the choice of data structure
employed by OAT and BSM for recording the allowlist. OAT utilizes a sparse hash map to store the
allowlist, with each item occupying 4 bytes and indexed by the variable address. On the other hand,
BSM adopts a compact bitmap representation, where each legal item is represented by a single bit.

FLASH Overhead. The increase in binary size caused by BSM instrumentation is shown in Table 3.
It can be seen from the table that the binary size increases only 10.79% on average. The following
four categories of instrumentation increase the code size:

—We instrument a trampoline function before control-flow transfers, to jump to CFI_Valida-
tion_Module.

—We instrument instructions to obtain the CriticalAddr before the STR instruction (define-sites)
of critical variables.

—We instrument NOP ("$+'0, '0) instructions between the STR instruction (define-site of
critical variable) and the Branch instruction, to help obtain the exact trigger instruction of the
DWT event.

—The instructions that maintain the secure stack. These instructions will only be instrumented
in the functions where critical stack variables are defined.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:20 A. Peng et al.

Table 3. Memory Overhead

Program Baseline CFI and DFI Enabled Overhead
RAM (kB) FLASH (kB) RAM (kB) FLASH (kB) RAM (%) FLASH (%)

Syringe Pump 4.20 33.07 5.89 36.67 40.24 10.89
Light Controller 4.72 19.42 6.22 21.38 31.78 10.09
PID Controller 5.88 21.53 7.39 24.04 25.68 11.66

PinLock 3.34 23.64 4.84 26.01 44.91 10.03
Steering Controller 4.61 20.63 6.12 23.01 32.75 11.54

CRC_Data 4.85 31.28 6.35 34.72 30.93 11.00
RNG_MultiRNG 4.89 31.90 6.40 35.12 30.88 10.09

CRYP 5.65 43.20 7.16 47.86 26.73 10.79
OSPI 5.15 35.61 6.68 39.48 29.71 10.87

RTC_Alarm 4.86 34.79 6.38 38.57 31.28 10.87
Geometric Mean 4.76 28.55 6.31 31.63 32.56 10.79

Table 4. Power Consumption Overhead

Program Baseline (mW) CFI and DFI Enabled (mW) Overhead (%)
Syringe Pump 771.4 776.5 0.66
Light Controller 824.2 832.5 1.01
PID Controller 841.3 842.7 0.17

PinLock 778.9 782.1 0.41
Steering Controller 782.6 789.1 0.83

CRC_Data 713.4 718.2 0.67
RNG_MultiRNG 725.7 730.2 0.62

CRYP 737.4 741.9 0.61
OSPI 741.2 744.5 0.45

RTC_Alarm 726.9 730.4 0.48
Geometric Mean 763.2 767.7 0.59

In addition, the compiler will remap critical variables to the monitored memory, but this part
only changes the operands of related instructions without adding any codes.

6.4 Power Consumption Overhead
In this section, we evaluate the power consumption overhead of our prototype. It is important to
note that embedded devices are often designed to perform their tasks with low power consumption,
as they may rely on battery power or other limited power sources. For example, smoke alarm
devices are typically mounted on walls or ceilings and need to continuously perform their tasks
while being on standby for a long time. Consequently, power is a highly precious resource for these
devices, and any modifications must carefully consider its impact.

Power consumption would be influenced by various factors, including CPU frequency, workload,
and connected peripheral devices, and so on [66]. In our evaluation, the primary source of changes
in power consumption is the workload. We made efforts to keep other factors unchanged, such as
maintaining the default CPU clock frequency of 110 MHz. Additionally, our development board,
the STM32L562E-DK, is equipped with an “onboard energy meter” USB interface [9], which allows
for convenient measurement of power consumption. On this basis, Table 4 shows the power

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:21

Table 5. Security Validation Testing

Vulnerability Exploitation Attack Prevention
No Description Unlock? Attack Detected?

vul-1: Stack memory overflow #1 Overwrite a local variable No No
#2 Overwrite return address No Yes

vul-2: Global memory overflow #3 Overwrite the pin hash (variable key) No Yes

vul-3: Arbitrary memory writes

#4 Modify return address No Yes
#5 Modify lock_status variable No Yes
#6 Modify DWT configurations No Yes

consumption of our prototype system on ten embedded programs. BSM is designed to focus
on protecting only a limited set of critical variables, and the DFI validation would be triggered
only when the monitored memory is accessed. Moreover, the hash function adopted in BSM is
straightforward, which suppresses the increase in power consumption. The power consumption
overhead associated with BSM is relatively small, with an geometric mean of 0.59%, translating to
a negligible energy requirement for embedded systems, which is consistent with some existing
work [71] in the field. This is likely due to the fact that our modifications do not entail an increase
in CPU frequency, nor do they include high-frequency intensive computational processes (e.g.,
encryption/decryption), and they also avoid the utilization of excessive memory.

6.5 Attack Prevention
To show the security benefits of BSM, a common approach is to conduct an attack prevention test.
However, there is no benchmark specifically designed for evaluating security issues associated
with deeply embedded devices using bug and exploitation measures. Consequently, we align with
the existing research [4, 6, 19, 82], which employs injected vulnerabilities and corresponding
exploits for similar evaluation purposes. We also note that the target program is protected using
the data execution prevention mechanism, meaning that data regions like stack or global are
set non-executable based on MPU settings, but it does not have ASLR protection. To this end,
we deliberately injected three vulnerabilities into the function rx_from_uart of PinLock project,
introduced additional temporary variables, and crafted a number of related exploits. The final goal
of these attacks is to execute the D=;>2: () function without entering the correct pin.

The attack settings and results can be seen at Table 5, and the three vulnerabilities and six exploits
are outlined below:

—vul-1: Stack memory overflow. Attackers can overwrite a local variable (Exploit No#1), and
they can also overwrite return address of the function rx_from_uart with a value of their own
choice—unlock function pointer (Exploit No#2).

—vul-2: Global memory overflow. Attackers can use this vulnerability to overwrite an important
global variable (i.e., the variable key that holds the PIN’s hash and is used in PIN code check)
with a malicious value (Exploit No #3).

—vul-3: Arbitrary memory writes. Attackers can write the desired memory directly by inputting
an address and the corresponding content. Specifically, these attackers can directly modify
the function pointer of rx_from_uart (Exploit No#4), the DWT configurations (Exploit No#5),
and the variable lock_status (Exploit No#6), respectively.

According to the table, none of the exploits successfully achieved the objective of executing the
D=;>2: () function. It is worth noting that the exploit No #1 went undetected by BSM. Although it
tampered with a specific local temporary variable, it did not alter the control-flow graph (CFG)

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:22 A. Peng et al.

or modify the critical variables that are monitored and protected by BSM. Consequently, the
exploit remained undetected but failed to execute the D=;>2: () function. Exploits No #2 and No #4
were detected by BSM. This is because, before the vulnerable function rx_from_uart returns, the
instrumented trampoline function sends the tuple (�, �) (where B is the D=;>2: () function pointer)
to the secure world. As the control-flow transfer is not present in the allowlist, it is promptly
identified and rejected by the CFI_Validation_Module. Exploits No #3 and No #5 were also detected
by BSM. The variables key and lock_status are monitored by DWTmechanism.When these variables
aremodified, a debug event occurs, triggering the DebugMon_handler to analyze the stacked context
and verify its legitimacy. Due to the absence of instrumentation and the lack of NOP instructions,
it is quickly identified as a non-critical store instruction, allowing the attack to be detected without
checking the allowlist. Exploit No #6 was also detected by BSM. We employed an additional pair of
DWT comparators to monitor the memory range encompassing all DWT configurations. This range
spans from the start address 0x0xE0001000 to the end address 0xE0001FFC, ensuring comprehensive
monitoring of the memory associated with DWT configurations [52]. On this basis, any writes to
this memory region (i.e., DWT configurations) would trigger an interrupt. Like the previous exploits
(e.g., Exploit No #3 and No #5), this attack involved a non-critical store instruction, and it was
swiftly detected and prevented by the DFI_Validation_Module. In summary, our security validation
test experiments empirically demonstrate the effectiveness of BSM in preventing potential attacks.

6.6 Security Analysis
While BSM prevents potential attacks as demonstrated in Section 6.5, one also needs to consider
potential negative security impact of BSM. In this section, we conduct a thorough examination of
its potential attack surface. As outlined in Section 3, our threat model considers the possibility of
attackers discovering memory corruption vulnerabilities within the normal world and exploiting
them remotely through I/O interfaces (e.g., network and UART). For instance, they may seek
to hijack control flow or manipulate critical variables using data-only attacks. Furthermore, we
assume that the software within the TEE is free from bugs, which is also widely accepted in multiple
existing research studies [4, 56, 70]. To bypass BSM, attackers would need to: ¬ discover and exploit
vulnerabilities in the newly implemented code within the secure world; ­ modify important
metadata in secure world, such as bitmap-based allowlists; ® tamper with DWT mechanisms, such
as modifying DWT configurations; and ¯ employ traditional attack methods, such as altering
critical variables or hijacking control flow with desired function pointers.

Let us consider these risks one by one, starting with ¬. Like existing work, we assume that
the code in the secure world is bug-free. Even so, let us consider how realistic this assumption is.
While in theory, the newly added code increases the attack surface, we find that the likelihood
of exploitation is minimal. Firstly, the size of our added code base in TrustZone is only around
200 lines of code, which is relatively small. Secondly, the input data type of secure APIs is limited
(e.g., the source and destination tuple (�, �)). Moreover, we ported the secure APIs to Linux and
we subjected them to an extensive fuzzing campaign on Linux for 24 hours, where no bugs were
found. Consequently, ¬ can be dismissed. ­ can also be ruled out. Normal world code cannot
directly access metadata in the secure world due to the protection provided by the TEE. The only
way to modify metadata is by either abusing secure APIs or exploiting vulnerabilities within these
APIs. However, since BSM incorporates CFI, any attempt to hijack control flow would be promptly
detected. Moreover, we assume that secure APIs are free of bugs, eliminating the possibility of
exploiting TEE vulnerabilities.Thus, ­ is eliminated. As demonstrated in Section 6.5, ® is impossible.
Any modification to DWT configurations triggers security checks, and we quickly detect such
attacks because no instruction is permitted to modify them. Therefore, ® is not a viable threat. In
Section 6.5, we showcased attack detection, where no exploits succeeded. However, this does not

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:23

imply that BSM is perfect. For instance, attackers can still modify other non-critical variables without
detection. The overall impact on the application’s security would depend on the protection goals
and settings, such as determining which variables are deemed critical. Nonetheless, by deploying
BSM, we believe that it would significantly raise the barrier for successful attacks.

7 Discussion
We design a hybrid protection scheme that overcomes two challenges associated with CFI and DFI.
First, existing CFI schemes based on hashes need to calculate all jump paths in advance, including
forward indirect jumps/calls and backward returns, which requires a large storage and calculation
cost, especially for returns. Although a shadow stack can be used to reduce the memory and
computation overhead [56], it is still vulnerable if its location cannot be properly be randomized.
C-FLAT [4] only records a small program execution path; OAT [70] also focuses on only a subset of
functions (critical operations). The existing solutions still do not fully protect the control flow.

Second, to check whether memory write operations are legal, existing DFI solutions need to
instrument all the memory write instructions [16]. This is not affordable for embedded devices
with limited resources. These schemes increase both code size and runtime overhead.

Our scheme achieves the verification of both while maintaining good performance on embedded
devices. For CFI, BSM records all indirect forward and backward edges in a bitmap protected by
TrustZone. The design of the bitmap allows the verifier to quickly check whether the device is
under attack. For DFI attestation, instead of instrumenting all the write instructions, we simply
need to remap the important variables/memory to DWT monitoring memory, which is supported
by hardware. All writes to the memory of our concern are automatically captured, while other
writes that are not security-relevant are not affected.

Handling Library Functions. When calling a library function (i.e., memcpy) in the source code, the
compiler would link it with the pre-compiled library file by default. However, if the library function
accesses the critical variables, we need to instrument the instructions that write to memory. The
instrumentation will record the runtime memory address for further validation. This conflicts
with the use of a pre-compiled library file. Therefore, in the LLVM IR pass, we will replace the
related call instruction with the wrapped library function we prepared. For example, we replace
the “call memcpy” with the “call_wrap_memcpy” instruction, and provide the source code of
“_wrap_memcpy” function, then we instrument the source code of “_wrap_memcpy” function
rather than “memcpy” function.

Handling Interrupts. Bare-metal programs for MCU-based embedded devices typically work in an
interrupt-driven manner, where interrupts can occur at any stage of program execution. When
an interrupt happens, the execution context of the interrupt (including the next pc instruction)
will be saved on the stack. The return from interrupt is different: the processor loads the Exception
Return Payload (EXC_RETURN) into the PC register either with a BX or a POP instruction. Note
that EXC_RETURN is encoded to the form 0xFFXXXXXX and not interpreted as an instruction
address. Instead, the processor will recognize the value of EXC_RETURN and know that there is an
interrupt being handled. Then, it restores the saved context register, including restoring the stored
pc to the PC register. Since an attack could modify the saved stack frame, and we do not know the
value of stored pc in advance through static analysis. Therefore, no bitmap-based method is used
here. Instead, we instrument the entry and exit point of the handler. Thus, we extract the stored pc
to a shadow stack at the entry point and check it at the exit point.

Selecting Critical Variables. Generally, selecting critical variables heavily depends on application-
specific semantics and protection goals. Programmers annotate variables that directly influence the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:24 A. Peng et al.

program’s operational behavior as critical, based on program semantics and protection goals [15,
18, 70]. Variables with long lifecycles are also marked as critical since they are more likely to have
a significant impact on the program. Determining which variables is critical and should be selected
is orthogonal to our work, and this is not part of our contribution. In our design, we begin by
manually annotating an initial set of critical variables then obtain a complete set of critical variables
through propagation analysis. It would be interesting to explore methods that automatically infer
semantic critical variables within an application for future research, which we leave as an open area
for investigation. One promising direction for future research could involve leveraging machine
learning-based approaches. Critical variables often exhibit application-specific semantics and
distinct patterns, such as dataflow or control-flow patterns. Machine learning techniques are good
at recognizing such patterns and understanding semantics across diverse domains, such as computer
vision and natural language processing. We also observed that there are relevant works addressing
this direction, such as the solution proposed by Wang et al. [77]. As machine learning techniques
continue to advance, particularly in the areas of semantic learning and pattern recognition, we
anticipate that they will significantly contribute to the domain of inferring critical variables, thereby
enhancing the effective protection of embedded devices.

Supporting Other Development Boards. We implemented a prototype of the proposed enforcement
system, BSM, on an STM32L562E-DK development board. However, our techniques are not limited
to this specific board. They can be applied to any chip equipped with TEE and watchpoint debug
feature, such as the STM32L552E-EK, NUCLEO-L552ZE-Q, and others.

Collision Prevention. To avoid collisions, we first considered a hashmap-based method, but found that
it requires too many resources. For example, it will cause 300% memory overhead in extreme cases
[72], which is unacceptable in resource-constrained deeply embedded devices. Our bitmap-based
method can greatly reduce runtime and memory costs. However, it may lead to collisions, which
seems to be a real attack and would influence the security of our solution. The attacker searches
for illegal tuples with collisions to bypass the protection. A naive approach could potentially have
collisions for CFI and DFI. For CFI, an attacker would modify the jump target for either forward
or backward branches. Nevertheless, we could enumerate all potential ROP gadgets based on the
ROPgadget tool [65]. If there are = indirect instructions and< gadgets, we can iterate to get< ∗ =
combinations, then exclude all legal cases, and then get all the combinations that could potentially be
attacked; For DFI, the potential attacks are limited to the instrumented instructions that operate on
critical variables. Since CFI is guaranteed, the best way to create a collision is to overflow the critical
variables. Nevertheless, we could also enumerate all the threat situations. Specifically, if there are =
critical variables and< critical store instructions, we can iterate to get< ∗ = combinations, then
exclude all legal cases, and then get all the combinations that could potentially be attacked. Note
that we do not consider combinations of non-critical store instructions, because we can directly
detect them by forward searching the NOP instruction in the exception handler and then reject it.
Obviously, debug monitor interrupt is triggered by non-critical store instructions is illegal. After
that, we can check the possibility of collisions and make sure these combinations do not overlap
with our bitmap.

To avert this risk, we increase the size of the bitmap until it is sparse enough to eliminate the
collisions. In practice, a 1-kB bitmap can map up to 8,192 different tuples, which is enough in
bare-metal programs to ensure collision-free operation. Moreover, in the current implementation,
a tuple (�, �) of a legal operation is stored in only one bit of the bitmap. We could store more
information about the tuple to avoid collisions. For example, using multiple bits (e.g., 4 bit or 8 bit,
similar to Bloom Filter [11]) to represent a tuple. In an extreme case, we can store an original tuple
(�, �) directly in the bitmap, which is similar to the hashmap-based method. Nevertheless, we find

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:25

that the current approach works on the small devices, and we achieve low performance overhead
and memory overhead even when we ensure there are no collisions.

8 Related Work

CFI. CFI enforcement has been a popular topic since it first came out. It aims to thwart attackers’
attempts to manipulate software systems into performing unintended control transfers while
executing code. Its primary focus is guaranteeing that the system code adheres to legitimate
software control paths during system runtime. Numerous studies on CFI [1, 12, 14, 28, 53, 75, 76, 78,
80] have been proposed to protect programs from control-flow hijacking attacks. Abadi et al. [1]
enforce CFI on the ×86 architecture, ensuring the control flow at runtime remains within a given
CFG. Chao et al. [79] propose CCFIR, which collects all legal targets of indirect control-transfer
instructions, puts them into a dedicated “Springboard section” in a random order, and then limits
indirect transfers to flow only to them. Van der Veen et al. [75] present a binary-level context-
sensitive CFI which tracks paths to sensitive program states and define the set of valid control
edges within the state context to yield higher precision than existing CFI implementations. PIBE
[28] offers comprehensive protection against control-flow hijacking at a fraction of the cost of
existing solutions, by revisiting design choices in the compiler’s optimization passes. While these
schemes try to find a practical trade-off between runtime overhead and the level of precision, they
are not built specifically for embedded systems.

With the emergence of the IoT and Cyber Physical Systems, the security of embedded devices
becomes a concern for researchers and industry. However, embedded systems are typically subject
to severe resource constraints, such as runtime, energy, and memory, it is very challenging to
deploy general security protection schemes on them. Thus, some researchers systematically explore
existing CFI protections targeting resource-cone-constrained embedded devices [54].

Buffer overflows are very common software flaws. An attacker can use a buffer overflow on
the stack to overwrite the return address in the stack frame, thereby redirecting the program’s
control flow and executing arbitrary code. Backward control-flow edges in embedded programs are
an attractive target for hackers and need to be protected. There has been a considerable amount
of research to address this problem. Davi et al. [22] enforce that a return only targets a valid
return landing pad of a function whose label is currently active. This requires the addition of
new labels/instructions to the code. Almakhdhub et al. [6] suggest enforcing Return Address
Integrity (RAI) where the return address cannot be modified by an attacker. They introduce a
technique that moves return addresses from writable memory to readable and executable memory,
preventing write access to the return address. Utilizing the Memory Protection Unit (MPU)
and the unprivileged store instruction on embedded ARM architectures, Zhou et al. [81] present
a compiler-based defense scheme, Silhouette, that efficiently guarantees the integrity of return
addresses. Silhouette combines an incorruptible shadow stack for return addresses with checks
on forward control flow and memory protection to ensure that all functions return to the correct
dynamic caller. While Silhouette uses binary instrumentation to prevent a privileged attacker
from modifying the MPU that hides the shadow stack, Nyman et al. [56] supports hardware-based
shadow stack protection by TrustZone-M security extensions. The scheme they propose is the first
interrupt-aware CFI scheme for low-end MCUs.

With the increasing popularity of backward edge defense mechanisms, attackers are beginning
to consider other points of interest (indirect function calls and indirect jumps) to redirect the
control flow. Hence, researchers have proposed defense schemes to counter attacks that exploit
forward-edge control-flow manipulation as well. When it comes to deploying forward-edge CFI in
resource-constrained embedded devices, the memory requirements of storing and enforcing the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:26 A. Peng et al.

CFG becomes an issue that needs to be addressed. Coarse-grained forward-edge CFI is occasionally
applied in resource-constrained embedded systems because of its reduced memory and processing
requirements. For example, Mingwei et al. [80] propose to check partial branches/jumps. Silhouette
[81] utilizes a labeling mechanism to guarantee forward-edge CFI. However, such mechanisms are
not precise enough and can still be exploited by attackers [23]. Therefore, Das et al. [21] present an
approach to enforce fine-grained CFI at a basic block level for embedded devices, which is effective
against runtime attacks on memory with acceptable performance overhead. Wenjian et al. [37]
propose to employ basic block information inside the binary code and read-only data to enforce CFI.
They identify a key binary-level property called basic block boundary, and based on it, they propose
the code-inspired method where short code sequences can endorse a control-flow transition.

While these works can effectively protect embedded devices, they still need to fully protect the
control flow, and their overhead could be further reduced. Meanwhile, they propose CFI enforcement
schemes on the embedded devices but do not take dataflow integrity into consideration. Then, we
propose BSM, which reduces the costs by using a compact bitmap-based allowlist to store and
find information for forward and backward control flows. In addition, BSM also implements the
dataflow integrity protection scheme.

Runtime Data Protection. Besides control-flow hijacking, which can cause unexpected execution
paths at runtime, manipulation of non-control data that can affect the output of the embedded
devices also causes significant damage because of the interaction between embedded devices and
the real world. There are several works aiming to protect dataflow integrity. WIT [5] prevents
memory error exploits by maintaining a color table that maps memory addresses to colors. At
runtime, instructions are prevented from modifying objects that are not in the same color. Miguel
et al. [16] present a simple technique that computes a dataflow graph using static analysis and
instruments the program to ensure that the flow of data at runtime is allowed by the dataflow graph.
HDFI [68] is hardware-assisted dataflow isolation that provides security protection. TMDFI [51]
is a hardware dataflow integrity implementation to enable fine-grained DFI checks with reduced
time and space overheads. DataShield [15] separates the memory of the embedded devices into
two regions, a region for the sensitive data that need to be precisely protected and a region for
non-sensitive data that only need to be coarsely protected. Dataflow between variables in different
regions is forbidden. By doing so, DataShield can prevent sensitive data from being read or written.

Unlike for CFI, there are relatively few works to detect data-only attacks on embedded systems.
Sun et al. [70] proposed OAT, first formulated a new security property for embedded devices, called
“Operation Execution Integrity (OEI).” Based on this property, they designed a system that
enables remote OEI attestation for ARM-based embedded devices. However, it does not work on
low-end devices since no low-end ARM CPU with TrustZone was available at that time. Instead, it
works on ARM Cortex-A53, a more powerful processor that is not suitable for deeply embedded
devices. Although the overhead is decreased, OAT still requires significant resources (i.e., nearly 10
kB memory overhead and several seconds to verify the legitimacy of the operation). Due to the
significant overhead in the verification, OAT does not support deploying online; instead, it resorts
to remote attesting combined with a cloud backend. We have to note that frequent communication
with the cloud could also increase the overhead for low-end devices, including memory, runtime,
and power consumption.

In contrast, we propose a novel approach that uses the DWT and TrustZone features, as well
as a bitmap-based allowlist mechanism. Among, DWT widely exists in low-end processors after
ARMv7. It greatly reduces the amount of code for instrumentation (only need to instrument the
limited define-sites). Moreover, only accesses to the monitored memory will automatically trigger
the verification logic, while the others will not. Meanwhile, the use of the bitmap-based allowlist

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

BSM for Deeply Embedded Systems 192:27

Table 6. Comparison with Existing Researches

Research CFI DFI Remote Attestation (Offline) Online
C-FlAT [4] 3 5 3 5
Lo-FAT [27] 3 5 3 5

CFI CaRE [56] 3 5 5 3
Silhouette [81] 3 5 5 3
`RAI [6] 3 5 5 3

LiteHAX [26] 3 3 3 5
OAT [70] 3 3 3 5

BSM 3 3 5 3

greatly reduces the memory overhead (1.56 kB compared with 10 kB of OAT) and can efficiently
verify the legitimacy of the operation. In addition, when an illegal event occurs, we also support
saving the relevant context for offline analysis.

Comparison with Existing Work. BSM differs from existing research as outlined in Table 6. The
existing body of work in the context of deeply embedded systems has mainly focused on enforcing
CFI, with relatively fewer efforts dedicated to enforcing DFI [54]. In the context of general platforms,
enforcing dataflow integrity typically necessitates heavy instrumentation [5, 16], which can be
costly and impractical for resource-constrained embedded devices. To reduce the overhead, we can
draw lessons from CFI research, which has explored lightweight approaches by leveraging hardware
features, as well by as offloading work to remote servers. For instance, C-FLAT [4] and Lo-FAT [27]
utilize remote servers for legitimacy checks, albeit in an “offline” manner. Conversely, CFI CaRE
[56], Silhouette [81] and `RAI [6] offer stronger “online” security by leveraging TrustZone, specific
instructions (e.g., unprivileged store instructions) or dedicated registers (e.g., State Register), which
are hardware features provided by the MCUs. There are also recent efforts in enforcing DFI in
embedded devices that rely on remote servers for protection [26, 70]. However, these approaches
are limited to “offline” protection, only capable of detecting attacks after the fact. Recognizing
this limitation, Jakkamsetti [41] has highlighted the need for low-overhead online detection and
prevention as a future research direction. Accordingly, we propose BSM as a step towards this
direction, introducing a novel compact bitmap-based allowlist approach and exploring hardware
features such as DWT and TrustZone to offer stronger “online” protection.

9 Conclusions
CFI and DFI are two essential invariants we want to enforce in a computing system. While existing
CFI/DFI solutions have shown encouraging results in protecting commodity OSs, they consume
excessive memory and computation resources, making them unaffordable in resource-constrained
MCU-based embedded systems. Considering the limited resources in embedded systems, we propose
a new framework to implement online security monitoring mechanisms based on a compact bitmap-
based runtime data structure. In particular, we propose a hardware-assisted solution for DFI, which
can reduce code instrumentation and improve performance. We have implemented our idea with
a prototype named STM32L562E-DK for ARM Cortex-M series MCUs with TrustZone support.
Our evaluation results show that BSM can successfully detect control-flow hijacking attacks and
data-only attacks with minimal performance overhead.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

192:28 A. Peng et al.

Acknowledgment
We would like to thank all the editors and anonymous reviewers for their insightful comments and
feedback.

References
[1] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2009. Control-flow integrity principles, implementations,

and applications. ACM Transactions on Information and System Security (TISSEC) 13, 1 (2009), 1–40.
[2] Ali Abbasi and Majid Hashemi. 2016. Ghost in the plc designing an undetectable programmable logic controller

rootkit via pin control attack. Black Hat Europe 2016, 1–35.
[3] Ali Abbasi, Jos Wetzels, Thorsten Holz, and Sandro Etalle. 2019. Challenges in designing exploit mitigations for deeply

embedded systems. In Proceedings of the IEEE European Symposium on Security and Privacy (EuroS P’19). 31–46. DOI:
https://doi.org/10.1109/EuroSP.2019.00013

[4] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew Paverd, Ahmad-Reza Sadeghi, and
Gene Tsudik. 2016. C-FLAT: Control-flow attestation for embedded systems software. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security . 743–754.

[5] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel Castro. 2008. Preventing memory error
exploits with WIT. In Proceedings of the IEEE Symposium on Security and Privacy (SP’08). IEEE, 263–277.

[6] Naif Saleh Almakhdhub, Abraham A. Clements, Saurabh Bagchi, and Mathias Payer. 2020. `RAI: Securing embedded
systems with return address integrity. In Proceedings of the 27th Annual Network and Distributed System Security
Symposium (NDSS’20).

[7] ARM Ltd. 2021. Arm TrustZone Technology. Retrieved from https://developer.arm.com/ip-products/security-
ip/trustzone/

[8] ARM Ltd. 2023. ARM Cortex-M Programming Guide to Memory Barrier Instructions. Retrieved from
https://documentation-service.arm.com/static/5efefb97dbdee951c1cd5aaf

[9] ARM Ltd. 2024. Discovery Kit with STM32L562QE MCU. Retrieved from https://www.st.com/en/evaluation-
tools/stm32l562e-dk.html

[10] Gal Beniamini. 2017. Over The Air: Exploiting Broadcom’s Wi-Fi Stack. Google Project Zero Blog. Retrieved from
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html

[11] Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13, 7
(1970), 422–426.

[12] Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-Flow Integrity. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS). 340–353.

[13] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan Brunthaler, and Mathias Payer. 2017.
Control-flow integrity: Precision, security, and performance. ACM Computing Surveys (CSUR) 50, 1 (2017), 1–33.

[14] Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross. 2015. {Control-Flow} bending:
On the effectiveness of {Control-Flow} integrity. In Proceedings of the 24th USENIX Security Symposium (USENIX
Security’15). 161–176.

[15] Scott A. Carr and Mathias Payer. 2017. Datashield: Configurable data confidentiality and integrity. In Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications Security . 193–204.

[16] Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing software by enforcing data-flow integrity. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation. 147–160.

[17] Patrick Cégielski and Denis Richard. 2001. Decidability of the theory of the natural integers with the cantor pairing
function and the successor. Theoretical Computer Science 257, 1–2 (2001), 51–77.

[18] Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K. Iyer. 2005. Non-control-data attacks are
realistic threats. In Proceedings of the USENIX Security Symposium, Vol. 5.

[19] Abraham A. Clements, Naif Saleh Almakhdhub, Saurabh Bagchi, and Mathias Payer. 2018. {ACES}: Automatic
compartments for embedded systems. In Proceedings of the 27th USENIX Security Symposium (USENIX Security’18).
65–82.

[20] Abraham A. Clements, Eric Gustafson, Tobias Scharnowski, Paul Grosen, David Fritz, Christopher Kruegel, Giovanni
Vigna, Saurabh Bagchi, and Mathias Payer. 2020. HALucinator: Firmware re-hosting through abstraction layer
emulation. In Proceedings of the 29th USENIX Security Symposium (USENIX Security’20). 1201–1218.

[21] Sanjeev Das, Wei Zhang, and Yang Liu. 2016. A fine-grained control flow integrity approach against runtime memory
attacks for embedded systems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 11 (2016), 3193–3207.

[22] Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. 2014a. Hardware-assisted fine-grained control-flow integrity:
Towards efficient protection of embedded systems against software exploitation. In Proceedings of the 51st Annual
Design Automation Conference. 1–6.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

https://doi.org/10.1109/EuroSP.2019.00013
https://developer.arm.com/ip-products/security-ip/trustzone/
https://developer.arm.com/ip-products/security-ip/trustzone/
https://documentation-service.arm.com/static/5efefb97dbdee951c1cd5aaf
https://www.st.com/en/evaluation-tools/stm32l562e-dk.html
https://www.st.com/en/evaluation-tools/stm32l562e-dk.html
https://googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html

BSM for Deeply Embedded Systems 192:29

[23] Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014b. Stitching the gadgets: On the
ineffectiveness of {Coarse-Grained}{Control-Flow} integrity protection. In Proceedings of the 23rd USENIX Security
Symposium (USENIX Security’14). 401–416.

[24] Enrico De Santis, Antonello Rizzi, and Alireza Sadeghian. 2017. A learning intelligent system for classification and
characterization of localized faults in smart grids. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation
(CEC’17). IEEE, 2669–2676.

[25] Majid Derhambakhsh. 2022. PID Controller Library for ARM CortexM (STM32). Retrieved from
https://github.com/Majid-Derhambakhsh/PID-Library

[26] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi. 2018. Litehax: Lightweight hardware-
assisted attestation of program execution. In Proceedings of the IEEE/ACM International Conference on Computer-Aided
Design (ICCAD’18). IEEE, 1–8.

[27] Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas Davi, Patrick Koeberl, N. Asokan, and
Ahmad-Reza Sadeghi. 2017. Lo-fat: Low-overhead control flow attestation in hardware. In Proceedings of the 54th
Annual Design Automation Conference 2017 . 1–6.

[28] Victor Duta, Cristiano Giuffrida, Herbert Bos, and Erik Van Der Kouwe. 2021. PIBE: Practical kernel control-flow
hardening with profile-guided indirect branch elimination. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 743–757.

[29] Nicolas Falliere, Liam O. Murchu, and Eric Chien. 2011. W32. stuxnet dossier. White paper, Symantec Corporation,
Security Response 5, 6 (2011), 29.

[30] FDA. 2017. Cybersecurity Vulnerabilities Identified in Implantable Cardiac Pacemaker.
[31] B. Feng, A. Mera, and L. Lu. 2020. {P2IM}: Scalable and hardware-independent firmware testing via automatic

peripheral interface modeling. In Proceedings of the USENIX Security Symposium. 1237–1254.
[32] Matheus E. Garbelini, ChundongWang, Sudipta Chattopadhyay, Sun Sumei, and Ernest Kurniawan. 2020. SweynTooth:

Unleashing mayhem over bluetooth low energy. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC’20). USENIX Association, 911–925.

[33] Luis Garcia, Ferdinand Brasser, Mehmet Hazar Cintuglu, Ahmad-Reza Sadeghi, Osama A. Mohammed, and Saman A.
Zonouz. 2017. Hey, my malware knows physics! Attacking PLCs with physical model aware rootkit. In Proceedings of
the 24th Annual Network and Distributed System Security Symposium (NDSS’17). 1–15.

[34] Giovani Gracioli and Antônio A. Fröhlich. 2008. An operating system infrastructure for remote code update in deeply
embedded systems. In Proceedings of the 1st International Workshop on Hot Topics in Software Upgrades. 1–5.

[35] Benjamin Green, Richard Derbyshire, Marina Krotofil, William Knowles, Daniel Prince, and Neeraj Suri. 2021. PCaaD:
Towards automated determination and exploitation of industrial systems. Computers & Security 110, 102424.

[36] Andy Greenberg. 2016. Hacker Says He can Hijack a $35K Police Drone a Mile Away. Retrieved from https://www.
wired.com/2016/03/hacker-says-can-hijack-35k-police-drone-mile-away/

[37] Wenjian He, Sanjeev Das, Wei Zhang, and Yang Liu. 2020. BBB-CFI: lightweight CFI approach against code-reuse
attacks using basic block information. ACM Transactions on Embedded Computing Systems (TECS) 19, 1 (2020), 1–22.

[38] Hex Five Security, Inc. 2021. The First TEE For RISC-V. Retrieved from https://hex-five.com/multizone-security-sdk/
[39] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek Saxena, and Zhenkai Liang. 2016. Data-

oriented programming: On the expressiveness of non-control data attacks. In Proceedings of the IEEE Symposium on
Security and Privacy (SP’16). IEEE, 969–986.

[40] Troy Hunt. 2016. Controlling Vehicle Features of Nissan Leafs Across the Globe Via Vulnerable Apis. Retrieved from
https://www.troyhunt.com/controlling-vehicle-features-of-nissan/

[41] Sashidhar Jakkamsetti. 2023. Root-of-Trust Architectures for Low-End Embedded Systems. University of California,
Irvine.

[42] Dongseok Jang, Zachary Tatlock, and Sorin Lerner. 2014. SafeDispatch: Securing C++ virtual calls from memory
corruption attacks. In Proceedings of the Network and Distributed System Security Symposium (NDSS’14).

[43] Ori Karliner. 2018. FreeRTOS TCP/IP Stack Vulnerabilities–The Details. Retrieved from https://blog.zim-
perium.com/freertos-tcpip-stack-vulnerabilities-details/

[44] Julie A. Kientz, Shwetak N. Patel, Brian Jones, E. D. Price, Elizabeth D. Mynatt, and Gregory D. Abowd. 2008. The
georgia tech aware home. In Proceedings of the CHI’08 Extended Abstracts on Human Factors in Computing Systems.
3675–3680.

[45] M. Kol and S. Oberman. 2020. 19 Zero-Day Vulnerabilities Amplified by the Supply Chain. JSOF,White Paper. Retrieved
from https://www.jsof-tech.com/disclosures/ripple20/

[46] Philip Koopman. 2004. Embedded system security. Computer 37, 7 (2004), 95–97.
[47] Sreenath Krishnadas. 2016. Concept and Implementation of Autosar Compliant Automotive Ethernet Stack on Infineon

Aurix Tricore Board. Master’s thesis, Universitätsbibliothek Chemnitz.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

https://github.com/Majid-Derhambakhsh/PID-Library
https://www.wired.com/2016/03/hacker-says-can-hijack-35k-police-drone-mile-away/
https://www.wired.com/2016/03/hacker-says-can-hijack-35k-police-drone-mile-away/
https://hex-five.com/multizone-security-sdk/
https://www.troyhunt.com/controlling-vehicle-features-of-nissan/
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://www.jsof-tech.com/disclosures/ripple20/

192:30 A. Peng et al.

[48] Keen Security Lab. 2017. New Car Hacking Research: Tesla Motors. Retrieved from https://keenlab.ten-
cent.com/en/2017/07/27/New-Car-Hacking-Research-2017-Remote-Attack-Tesla-Motors-Again/

[49] Chris Lattner and VikramAdve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In Proceedings of the International Symposium on Code Generation and Optimization, 2004 (CGO’04). IEEE, 75–86.

[50] Lauterbach GmbH. 2022. MIPS Debugger and Trace. Retrieved from https://www2.lauterbach.com/pdf/debug-
ger_mips.pdf

[51] Tong Liu, Gang Shi, Liwei Chen, Fei Zhang, Yaxuan Yang, and Jihu Zhang. 2018. TMDFI: Tagged memory assisted for
fine-grained data-flow integrity towards embedded systems against software exploitation. In Proceedings of the 17th
IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International
Conference on Big Data Science and Engineering (TrustCom/BigDataSE’18). IEEE, 545–550.

[52] ARM Ltd. 2021. Armv8-M Architecture Reference Manual. Retrieved from https://developer.arm.com/documenta-
tion/ddi0553/

[53] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. 2015. CCFI: Cryptographically enforced control
flow integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security . 941–951.

[54] Tanmaya Mishra, Thidapat Chantem, and Ryan Gerdes. 2022. Survey of control-flow integrity techniques for real-time
embedded systems. ACM Transactions on Embedded Computing Systems (TECS) 21, 4 (2022), 1–32.

[55] Ben Niu and Gang Tan. 2015. Per-input control-flow integrity. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security . 914–926.

[56] Thomas Nyman, Jan-Erik Ekberg, Lucas Davi, and N. Asokan. 2017. CFI CaRE: Hardware-supported call and return
enforcement for commercial microcontrollers. In Proceedings of the International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 259–284.

[57] Rapid7. 2016. Multiple Vulnerabilities in Animas Onetouch Ping Insulin Pump. Retrieved from https://blog.rapid7.
com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/

[58] RJMSTM. 2020a. CRC Data. Retrieved from https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Pro-
jects/STM32L562E-DK/Examples/CRC/CRC_Data_Reversing_16bit_CRC/

[59] RJMSTM. 2020b. CRYP. Retrieved from https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Project-
s/STM32L562E-DK/Examples/CRYP/CRYP_AESModes/

[60] RJMSTM. 2020c. OSPI. Retrieved from https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Project-
s/STM32L562E-DK/Examples/OCTOSPI/OSPI_NOR_MemoryMapped/

[61] RJMSTM. 2020d. RNG MultiRNG. Retrieved from https://github.com/STMicroelectronics/STM32CubeL5/tree/mas-
ter/Projects/STM32L562E-DK/Examples/RNG/RNG_MultiRNG/

[62] RJMSTM. 2020e. RTC Alarm. Retrieved from https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Pro-
jects/STM32L562E-DK/Examples/RTC/RTC_Alarm/

[63] RJMSTM. 2020f. STM32CubeL5. Retrieved from https://github.com/STMicroelectronics/STM32CubeL5/tree/mas-
ter/Projects/STM32L562E-DK/

[64] Eyal Ronen, Colin O’Flynn, Adi Shamir, and Achi Or Weingarten. 2017. IoT goes nuclear: Creating a ZigBee chain
reaction. In Proceedings of the IEEE Symposium on Security and Privacy (SP’17). IEEE, 195–212.

[65] Jonathan Salwan. 2023. ROPgadget Tool. Retrieved from https://github.com/JonathanSalwan/ROPgadget
[66] Vijayalakshmi Saravanan, Senthil Kumar Chandran, Sasikumar Punnekkat, and D. P. Kothari. 2011. A study on factors

influencing power consumption in multithreaded and multicore cpus. WSEAS Transactions on Computers 10, 3 (2011),
93–103.

[67] SiFiv, Inc. 2022. RISC-V Debug Specification. Retrieved from https://github.com/riscv/riscv-debug-spec/blob/master/
riscv-debug-stable.pdf

[68] Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee, Taesoo Kim, Wenke Lee, and Yunheung
Paek. 2016. HDFI: Hardware-assisted data-flow isolation. In Proceedings of the IEEE Symposium on Security and Privacy
(SP’16). IEEE, 1–17.

[69] Yu Su, Fei Hou, Mingde Qi, Wanxuan Li, and Ying Ji. 2021. A data-enabled business model for a smart healthcare
information service platform in the era of digital transformation. Journal of Healthcare Engineering 2021, 1–9.

[70] Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. 2020. OAT: Attesting operation integrity of embedded devices. In
Proceedings of the IEEE Symposium on Security and Privacy (SP’20). IEEE, 1433–1449.

[71] Sebastian Surminski, Christian Niesler, Ferdinand Brasser, Lucas Davi, and Ahmad-Reza Sadeghi. 2021. Realswatt:
Remote software-based attestation for embedded devices under realtime constraints. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security . 2890–2905.

[72] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal war in memory. In Proceedings of the
IEEE Symposium on Security and Privacy. IEEE, 48–62.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-2017-Remote-Attack-Tesla-Motors-Again/
https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-2017-Remote-Attack-Tesla-Motors-Again/
https://www2.lauterbach.com/pdf/debugger_mips.pdf
https://www2.lauterbach.com/pdf/debugger_mips.pdf
https://developer.arm.com/documentation/ddi0553/
https://developer.arm.com/documentation/ddi0553/
https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/
https://blog.rapid7.com/2016/10/04/r7-2016-07-multiple-vulnerabilities-in-animas-onetouch-ping-insulin-pump/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/CRC/CRC_Data_Reversing_16bit_CRC/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/CRC/CRC_Data_Reversing_16bit_CRC/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/CRYP/CRYP_AESModes/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/CRYP/CRYP_AESModes/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/OCTOSPI/OSPI_NOR_MemoryMapped/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/OCTOSPI/OSPI_NOR_MemoryMapped/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/RNG/RNG_MultiRNG/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/RNG/RNG_MultiRNG/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/RTC/RTC_Alarm/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/Examples/RTC/RTC_Alarm/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/
https://github.com/STMicroelectronics/STM32CubeL5/tree/master/Projects/STM32L562E-DK/
https://github.com/JonathanSalwan/ROPgadget
https://github.com/riscv/riscv-debug-spec/blob/master/riscv-debug-stable.pdf
https://github.com/riscv/riscv-debug-spec/blob/master/riscv-debug-stable.pdf

BSM for Deeply Embedded Systems 192:31

[73] MSRC Team. 2021. BadAlloc–Memory Allocation Vulnerabilities Could Affect Wide Range of IoT and OT Devices in
Industrial, Medical, and Enterprise Networks. Retrieved from https://msrc-blog.microsoft.com/2021/04/29/badalloc-
memory-allocation-vulnerabili-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-
networks/

[74] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar Erlingsson, Luis Lozano, and Geoff Pike.
2014. Enforcing forward-edge control-flow integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security
Symposium USENIX Security . 941–955.

[75] Victor Van der Veen, Dennis Andriesse, Enes Göktas, Ben Gras, Lionel Sambuc, Asia Slowinska, Herbert Bos, and
Cristiano Giuffrida. 2015. Practical context-sensitive CFI. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security . 927–940.

[76] Zhi Wang and Xuxian Jiang. 2010. Hypersafe: A lightweight approach to provide lifetime hypervisor control-flow
integrity. In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 380–395.

[77] Zhilong Wang, Haizhou Wang, Hong Hu, and Peng Liu. 2021. Identifying non-control security-critical data in program
binaries with a deep neural model. arXiv:2108.12071. Retrived from https://arxiv.org/abs/2108.12071

[78] Bin Zeng, Gang Tan, and Greg Morrisett. 2011. Combining control-flow integrity and static analysis for efficient and
validated data sandboxing. In Proceedings of the 18th ACM conference on Computer and Communications Security.
29–40.

[79] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCamant, Dawn Song, and Wei Zou. 2013.
Practical control flow integrity and randomization for binary executables. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy. IEEE, 559–573.

[80] Mingwei Zhang and R. Sekar. 2013. Control flow integrity for COTS binaries. In Proceedings of the 22nd USENIX
Security Symposium (USENIX Security’13). 337–352.

[81] Jie Zhou, Yufei Du, Zhuojia Shen, Lele Ma, John Criswell, and Robert J. Walls. 2020. Silhouette: Efficient protected
shadow stacks for embedded systems. In Proceedings of the 29th USENIX Security Symposium (USENIX Security’20).
1219–1236.

[82] Xia Zhou, Jiaqi Li, Wenlong Zhang, Yajin Zhou, Wenbo Shen, and Kui Ren. 2022. OPEC: Operation-based security
isolation for bare-metal embedded systems. In Proceedings of the Seventeenth European Conference on Computer Systems.
317–333.

Received 15 November 2023; revised 24 March 2024; accepted 26 May 2024

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 7, Article 192. Publication date: September 2024.

https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabili-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabili-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabili-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://arxiv.org/abs/2108.12071

	Abstract
	1 Introduction
	2 Background
	3 Overview
	4 Design
	4.1 CFI
	4.2 Critical DFI
	4.3 Bitmap-Based Allowlist Construction and Storage
	4.4 Runtime Validation

	5 Implementation
	5.1 Static Analyzer
	5.2 Allowlist Extractor
	5.3 Instrumentation
	5.4 Runtime Validator

	6 Evaluation
	6.1 Firmware Samples
	6.2 Performance Overhead
	6.3 Memory Overhead
	6.4 Power Consumption Overhead
	6.5 Attack Prevention
	6.6 Security Analysis

	7 Discussion
	8 Related Work
	9 Conclusions
	References

