
1

InvisiGuard: Data Integrity for Microcontroller-Based
Devices via Hardware-Triggered Write Monitoring

Dongliang Fang, Anni Peng, Le Guan, Erik van der Kouwe, Klaus v. Gleissenthall, Wenwen Wang, Yuqing Zhang,
Limin Sun

Abstract—Deeply embedded devices powered by microcon-
trollers are widely deployed. To protect them from exploitation,
many lightweight defense mechanisms, such as control flow
integrity, have been proposed. However, these defenses cannot
provide data integrity—a security property of particular interest
in mission-critical tasks. Conversely, existing defenses that pro-
vide data integrity are too expensive to deploy in the resource-
constrained context of deeply embedded devices. In this paper, we
propose InvisiGuard, a hardware-assisted, low overhead approach
for data integrity. InvisiGuard leverages data watchpoints—a
commonly available debug feature on microcontrollers—to au-
tomatically intercept write operations to critical variables. Invisi-
Guard then checks the legitimacy of the write instruction against
an allowlist stored in a trusted execution environment (e.g., ARM
TrustZone-M). By relying on the hardware to automatically
intercept potentially dangerous instructions, InvisiGuard avoids
heavy code instrumentation, as required by traditional solutions,
making it suitable for resource-constrained microcontroller de-
vices. We have implemented InvisiGuard on an ARM Cortex-
M based development board and evaluated it with seven real-
world firmware samples. Our experiments show that InvisiGuard
reduces the runtime overhead by 56.99% and memory overhead
by 77.37% compared with state of the art.

Keywords—Deeply Embedded Devices, Data-integrity, Hardware-
assisted solutions.

I. INTRODUCTION

DEEPLY embedded systems powered by microcontroller
units (MCUs) are increasingly infiltrating our everyday

lives, for example, in healthcare, autonomous driving, and
home security. With the wide adaption of the Internet-of-
Things (IoT) technology, billions of these devices are deployed
today [84]. This results in a huge attack surface, which makes
it challenging to secure them. It therefore comes as no sur-
prise that attackers routinely exploit firmware vulnerabilities—
mostly based around memory safety—e.g., to remotely hijack
the target device or launch denial of service (DoS) attacks [15],
[28], [78], [42], [44].

To combat attacks in production, devices can be equipped
with runtime security defenses. But, while there are many

Dongliang Fang and Limin Sun are with the Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China, and also with
the School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

Anni Peng and Yuqing Zhang are with National Computer Network Intru-
sion Protection Center, UCAS, Beijing, China

Le Guan and Wenwen Wang are with University of Georgia, USA
Erik van der Kouwe and Klaus v. Gleissenthall are with Vrije Universiteit

Amsterdam, The Netherlands

on-device defense mechanisms for traditional computing plat-
forms [1], [30], [18], [67], [51], [5], these defenses are not
suitable for an embedded setting, as they tend to consume
more resources than can be afforded (e.g., MCU devices com-
monly have less than 256 kB of RAM). In response, several
lightweight mechanisms specifically designed for MCUs have
been proposed. For example, Silhouette [85] and µRAI [7]
effectively prevent corrupted return addresses on the stack,
thus enforcing backward control flow integrity (CFI) of the
firmware. Although CFI is an important security property, it
alone cannot defeat the dynamic and sophisticated cyberattacks
we are experiencing today [41], [65], [50].

This problem is particularly pressing for Cyber-Physical
Systems (CPSs) and Industrial Control Systems (ICSs), where
attackers can wreak havoc using data-only attacks [41], [19],
[16], [35], [36], even when CFI is perfectly honored. For
instance, attackers can gain unauthorized access by overwriting
variables used for authentication without knowing the cre-
dentials. An example of this is the successful attack on the
Schneider Electric Modicon M221 PLC controller, where the
attacker overwrote the password hash [41]. In industrial control
applications, corrupting semantically critical variables or mem-
ory has become a preferred exploitation method [29], [32],
[2], [20]. Such attacks can cause devastating physical mal-
functions, resulting in explosions, collisions, or false medical
treatment [73]. Worse, in a data oriented programming (DOP)
attack [36], [35], attackers can fully control the target device
by chaining together multiple data-oriented gadgets, using a
gadget dispatcher. Although there have been several proposals
for data integrity protection, they are geared towards tradi-
tional computing platforms and have quite limited real-world
adoption due to the prohibitive performance overhead [27]. It
is therefore unsurprising to observe even worse adoption in
resource-constrained embedded systems [49].

Lightweight Selective Protection With InvisiGuard In this
paper, we present InvisiGuard, a lightweight, hardware-assisted
defense mechanism to defeat data-only attacks on MCU
devices. Unlike remote attestation solutions [4], [57], [58],
[54], which are “offline” and detect attacks after the fact.
InvisiGuard provides proactive lightweight “online” protec-
tion. Compared to traditional software-based online protec-
tion mechanisms(e.g., Samurai [61], OAT’s CVI [76], etc.),
InvisiGuard further significantly reduces the overhead by
leveraging hardware features(i.e., DWT and TrustZone). To
remain feasible in a low-resource setting, InvisiGuard only
selectively protects security-critical data (we will refer to this
data as critical variables), e.g., hash and flags used in an

2

Critical Heap
& Stack

Critical BSS

Critical Data

Stack

Heap

Data/BSS

Code

1
. w

ri
te

Debug Handler

2
. h

ar
d

w
ar

e
tr

ig
ge

r

• Instruction ID
• Variable ID

3
. l

eg
it

im
ac

y
ch

ec
k

Debug HandlerMemory Layout

Fig. 1: High-level idea.

authentication process, as well as the variables determining
the force and direction of an actuator. The idea of selective
protection is not new, but existing solutions offer insufficient
performance benefits, mainly because existing work heavily
relies on software-based instrumentation.

InvisiGuard avoids costly instrumentation by proposing a
lightweight data integrity mechanism, which combines two
hardware features in a novel way: 1) data watchpoints (a com-
monly available debug feature on microcontrollers that enables
automatic interception of chosen write or read operations), and
2) Trusted Execution Environments (TEE). At a high level,
InvisiGuard leverages the watchpoint mechanism to construct
a single continuous memory region called GuardedZone, where
InvisiGuard places critical variables. Whenever writing a vari-
able in the GuardedZone, the hardware automatically traps the
execution via a monitor exception handler (see Section II),
allowing InvisiGuard to transparently check the legitimacy
of the write request against an allowlist stored in the TEE.
This idea is illustrated in Figure 1, where we highlight the
GuardedZone in a red box. By relying on the hardware
to automatically intercept potentially dangerous instructions,
InvisiGuard thus avoids heavy code instrumentation, as re-
quired by traditional solutions, making it suitable for resource-
constrained microcontroller devices.

To create a design with this approach, we need to solve a
number of new challenges. For example, the data watchpoint
module cannot monitor an arbitrary number of variables scat-
tered across the address space. We address this challenge by
relocating all critical variables to a single memory region (i.e.,
GuardedZone). In particular, we divide the memory region into
three sub-regions based on the variable’s type and track the
bounds of variables accordingly (see Section V-C). Another
challenge we face is the fact that, when the hardware intercepts
potentially dangerous instructions, its exception context does
not contain all the necessary information (e.g., the responsible
write instruction and target address). InvisiGuard needs to
recover them through additional analysis to assist legitimacy

checks. In particular, it uses stacked context to decode the
write instruction to retrieve the base register and immediate
offset, which are then used to calculate the target memory
address (see Section V-D). To address challenges due
to the asynchronous nature of exceptions and the multiple
addressing modes offered by ARM, we use a compiler backend
plugin that injects NOP instructions and regulates the emitted
instructions (see Section V-D). We show that we can address
these challenges with minimal hardware requirements.

We built a prototype of InvisiGuard on the STM32L562E-
DK development board and evaluated it using seven real-
world firmware samples. Our results show that InvisiGuard
is effective in preventing data-only attacks, and has better
performance with less memory overhead compared to state-
of-the-art solutions. In particular, compared to critical variable
Integrity (CVI) proposed in OAT [76] (see Background II for a
brief introduction), InvisiGuard reduces the runtime overhead
by 56.99% and memory overhead by 77.37%. We also find
that InvisiGuard has no false positives and only a few false
negatives. In summary, we make the following contributions.
• We propose a lightweight data integrity mechanism

that selectively protects critical data only and mini-
mizes instrumentation overhead with hardware assis-
tance, thereby fulfilling the tight resource budget on
resource-contained MCU devices.

• We implement our idea on an ARM Cortex-M based
MCU by addressing a set of non-trivial challenges
unique to our design and the ARM Cortex-M platform.

• We evaluate our prototype on real-world firmware, and
the results show substantially lower overhead compared
to the state-of-the-art.

II. BACKGROUND

Deeply Embedded Systems Embedded systems are widely
used in IoT, industrial control, automotive, healthcare, and
other fields. Following the categorization proposed by Abbasi
et al. [3], in this paper, we focus on deeply embedded systems,
which are a subset of embedded systems with the following
characteristics: (1) They are powered by a low-cost system-
on-chip (SoC) (e.g., MCU), which integrates a processor,
memory, and other peripheral devices onto a single chip
with constrained resources; (2) The applications often lack
a user interface or have uncommon ones to reduce resource
consumption; and (3) run on extremely minimal OSs (such as
FreeRTOS) or no OS at all (i.e., baremetal);

Data Watchpoint Data watchpoints are a common hardware-
enabled debugging feature in MCU-based devices. With this
feature, whenever an interesting variable is accessed, the
hardware halts execution and generates a signal to the external
debugger (e.g., a USB dongle), which then controls the debug-
ging target. This feature is widely supported by mainstream
MCUs, including ARM [11], RISC-V [71], and MIPS [47].
For Cortex-M MCUs, data watchpoints are implemented by
the Data Watchpoint and Trace Unit (DWT), an ARM Intel-
lectual Property for data watchpoints, execution tracing, system
profiling, and many helpful debugging functions.

3

DWT monitors a contiguous memory region based on the
access type (i.e., read, write, or execute). The range is con-
figured using a pair of comparators. The board we used for
our experiments supports 16 pairs of comparators, indicating
that 16 memory regions can be monitored simultaneously. A
match can either trigger an external debugger (halt mode), or
raise a debug monitor exception (monitor mode), depending
on the configuration of the Debug Exception and Monitor
Control Register (DEMCR). InvisiGuard configures DWT to
work in monitor mode. Specifically, InvisiGuard performs the
legitimacy check of variable accesses in the handler of the
debug monitor exception (i.e., DebugMon_Handler).

ARM TrustZone-M ARM TrustZone-M is specifically de-
signed for ARM Cortex-M series MCUs, providing a
hardware-based TEE for high-assurance tasks. The feature
divides the system into two execution environments: the secure
world and the non-secure (or normal) world. The processor is
time shared between the two environments. Correspondingly,
the system resources (such as memory and peripherals) are
split into secure ones and non-secure ones. When the processor
runs in the normal world (non-secure state), it can only access
non-secure resources. When the processor runs in the secure
world (secure state), it can access all the resources.

The transition between the two worlds is realized in two
ways: secure calls or exceptions. Secure calls allow the normal-
world firmware to invoke functions implemented in the secure
world via well-defined entry points. The entry is guarded by
a special instruction called Secure Gateway (SG). Exceptions
can also cause cross-world transitions depending on whether
they are banked or not. Banked exceptions have separate
resources in both worlds to handle their own exceptions, so
world transition is unnecessary. Non-banked exceptions such
as debug monitor exception can only target one security state.
As such, by configuring the DEMCR [10], we can also force
the debug monitor exception to always target the secure world,
even if the processor is currently running in the normal world.

CVI Mechanism One important contribution of OAT [76] is
to propose selective data protection – CVI (Critical Variable
Integrity). The core idea is to check if the value of a critical
variable at the use-site (i.e., read instructions) remains the
same as recorded at the last legitimate define-site (i.e., write
instructions). The advantage of the CVI design is that it
does not need to instrument non-critical instructions. However,
both the define-site and use-site of critical variables must be
instrumented to record the written value and to verify the data
integrity, respectively. This instrumentation incurs considerable
overhead. We can significantly reduce the overhead using our
proposed hardware-supported mechanism.

III. CHALLENGES

Problem Setting We use a code snippet of a real-world
MCU firmware as an example to explain the problem and
illustrate how our solution advances the state of the art.
This firmware turns an Arduino MCU into a syringe pump,
which is used to control the quantity of fluid to dispense
or withdraw [62]. Syringe pump has been widely used in

1 typedef struct {
2 char direction;
3 long amount;
4 } cmd_t;
5 long ustepsPerML = 100;
6 void userOperation(){
7 cmd_t cmd;
8 int authenticated = 0;
9 char buf[100]; // input buffer

10 while (!authenticated){
11 getInput(buf); // BUGGY!!!
12 if (auth(buf)){
13 authenticated = 1;
14 extractCommand(&cmd, buf);
15 }
16 }
17 if (authenticated){
18 bolus(cmd.direction, cmd.amount);
19 }
20 }
21 void bolus(char direction, int amount){
22 /* set operation direction */
23 /*......*/
24 /* change units to steps, move stepper */
25 long steps = amount * ustepsPerML;
26 for(long i=0; i < steps; i++){
27 /* */
28 }
29 }

Listing 1: Code snippet of the open source Syringe Pump
firmware.

chemical and biomedical applications and this firmware has
also been evaluated in related work [4], [76], [77]. In List-
ing 1, the core program logic is implemented in the function
userOperation(). The code snippet is mostly copied as
is, except that we added user authentication logic at line 12
based on [19]. Adding authentication is reasonable because
some commercial syringe pump products can be controlled
from remote smartphones [25], and authentication processes
are commonly used in embedded devices [13].

This function receives user input and stores it in a buffer
(line 11). The user input includes the credential and the
command. Then, if authentication passes, the flag authen-
ticated is set (line 13) and the command is extracted to cmd
(line 14). Finally, based on direction indicated by direction
and the amount indicated by amount, the firmware drives
the syringe pump to dispense or withdraw liquid (lines 21-
29). There is a buffer overflow vulnerability in the function
getInput() which allows attackers to overwrite the seman-
tically critical variable authenticated. Since the attacker
does not know the credentials, the firmware will fail the
authentication at line 12. However, if the attacker overwrites
authenticated, in the subsequent while iteration the
firmware directly jumps to line 17, followed by the execution
of arbitrary attacker-specified commands. Therefore, assuming
that the attacker can send data to the syringe pump, they can
exploit this buffer overflow bug to issue any commands without
knowing the user credential. This threat model is realistic even
in an isolated network. As shown in a recent survey [31],
insider attacks are top security challenges in an air-gapped
environment. Note that this is a data-only attack that does
not violate control-flow integrity, thereby bypassing existing

4

TABLE I: Comparison with related work in selective write integrity protection (✓: need instrumentation, -: no instrumentation
needed, □: implicit instrumentation).

Name Instrumentation Points Protection Scope
Allowed Writes Other Writes Allowed Reads Other Reads Target Property

WIT [5] ✓ ✓ - - all data write integrity
Datashield [17] ✓ ✓ - - critical data write integrity
Samurai [61] ✓ - ✓ - critical data write integrity

OAT [76] ✓ - ✓ - critical data write integrity
InvisiGuard □ □ - - critical data write integrity

CFI protection. To prevent these attacks from happening,
the key research question is how to protect the integrity of
semantically critical data in the system.

Selective Protection Full protection of non-control data offers
strong security, but the required instrumentation and legitimacy
checks at almost all memory access sites are too costly (e.g.,
44%-103% overhead reported in DFI [18], 116% overhead
reported in CETS [52]), which is infeasible for practical usage,
especially in resource-constrained embedded devices. Indeed,
low overhead is the most important prerequisite for a practical
solution. To make it lightweight, a common solution is to
selectively secure only the essential subset of non-control data
for a specific program. Selective protection involves sacrificing
strong security guarantees for practicality, but it has been
shown to be valuable by many studies [61], [60], [17], [76].
Selective protection is reasonable, because 1) non-control data
attacks are more likely to target specific types of data (e.g., data
with a long lifetime and application-specific security-critical
data [19]), and 2) safeguarding a subset of data can offer
indirect protection to other data. For the example in Listing 1,
instead of protecting all non-control data, only selectively pro-
tecting long-lived global data (i.e., ustepsPerML) and partly
semantic critical data (i.e, authenticated and cmd) will
greatly raise the bar for successful exploitation. Meanwhile,
we notice that other non-control data (e.g., steps) in the
function bolus will be indirectly protected based on integrity
constraints on the function’s inputs (i.e., the global variable
– ustepsPerML and the function parameter – amount).
Determining which variables should be selected generally
requires domain knowledge of specific application semantics
(see Section V-A).

Write Integrity Enforcement We distinguish between two
security properties: read integrity and write integrity. The
former means there is no unintended memory read operation
while the latter means there is no unintended memory write
operation. The notion of write integrity was first proposed
in WIT [5], which enforces write integrity. In the setting
targeted by our approach, write integrity is more important than
read integrity because 1) DOP attacks [36] require violations
of write integrity; 2) read accesses are far more frequent
than write accesses [72], which makes their protection more
expensive and less practical; and 3) existing work on general
platforms shows that write integrity can be enforced, but incurs
considerable overhead. Specifically, the reported performance
overhead of WIT [5] is around 5-25% for the SPEC bench-

mark. Reducing this overhead makes our approach more likely
to be deployed in practice.

However, reducing overhead through selective write in-
tegrity enforcement is far from trivial. Given a critical variable,
besides the legitimate instructions that are allowed to write to
it (i.e., “allowed writes” in Table I), its attack surface includes
all other write instructions (i.e., “other writes” in Table I). As
a result, a solution needs to ensure that modifications made
by all the write operations are checked. In the example of
Listing 1, if we want to ensure the write integrity property
of the variable authenticated, only instrumenting lines 8
and 13 is not enough. Rather, we need to instrument all other
writes (i.e., lines 11, 12, 14, etc.,) so that illegal modifications
made by them can be detected. In C/C++, since it is hard
to statically determine whether a pointer can or cannot point
to a critical variable, widespread instrumentation seems to be
inevitable.

Comparision With Prior Efforts In Table I, we summarize
prior solutions on selective write integrity protection and
compare them with InvisiGuard. As a baseline, WIT [5]
performs system-wide program analysis and instruments all
memory write instructions so that each of them only accesses
a predetermined set of objects. DataShield [17] (in write pro-
tection mode) improves WIT by only protecting critical data.
It also distinguishes other writes from allowed writes and only
enforces a coarse-grained check for other writes. However, it
still needs to apply system-wide instrumentation. OAT [76] and
Samurai [61] completely avoid instrumentation at other writes,
at the expense of instrumenting allowed reads. The basic idea
is to selectively track the data flow of critical variables and
check if the value at a use-site remains the same as that of the
last legitimate define-site. To this end, they need to instrument
both the allowed writes (to record the originally written values)
and the allowed reads (to compare values). In the example,
to protect authenticated, it needs to instrument both
lines 8,13 to record a value copy at allowed writes, and lines
10,17 to perform integrity checks at allowed reads. Lastly, in
InvisiGuard, we remove all the explicit instrumentation at all
the memory access points. Therefore, no instrumentation is
added in the example. Only when a critical variable is written
would a check be triggered by the data watchpoint unit. In
this sense, the instrumentation in InvisiGuard is considered
implicit and binds to write operations. As we will discuss in
Section VI-B, this can significantly reduce run-time overhead
because 1) checks are performed only when necessary and 2)

5

the number of write operations is much fewer than that of read
operations.

Why Not Place Critical Variables in TEE Since our solution
relies on a TEE, one may question why not directly place
critical variables in the secure world so that the compromised
firmware cannot access them. There are two options following
this idea. First, we can instrument critical instructions so
that they are redirected to the secure world via secure calls.
This approach necessitates instrumenting all define/use sites
of critical variables, incurring a similar overhead of OAT’s
CVI. Second, we can partition the program logic into a secure
part and a non-secure part, and then put the secure part in
the TEE so that bugs in the non-secure part cannot infect
the rest. Such partitioning requires a thorough refactoring of
the existing code and oftentimes involves substantial manual
effort. Moreover, it inevitably enlarges the Trusted Computing
Base (TCB) since more code is placed in the TEE. In con-
trast, InvisiGuard provides a compiler-based framework that
automatically transforms MCU firmware into a secure version,
thereby avoiding re-engineering efforts needed to protect a
large legacy C code base for MCU devices.

IV. OVERVIEW

InvisiGuard provides a lightweight data integrity mechanism
by selectively protecting critical data and minimizing instru-
mentation overhead using hardware assistance. This allows
InvisiGuard to respect the tight resource budget on resource-
contained MCU devices. Figure 2 shows the workflow of
InvisiGuard. Given the firmware’s source code, with minimal
annotations, our custom LLVM-based compiler automatically
compiles it into a hardened firmware.

Our compiler pass first extracts an initial set of critical vari-
ables, marked as such through annotations. Then, it expands
the set by adding variables based on a data dependence graph.
The full set of critical variables includes all variables that might
have a data flow into the initial ones, and therefore should also
be protected (Section V-A). Then, for each write instruction,
we calculate a list of data objects that it can access. If this
list contains any critical variable, the instruction is considered
critical. For each critical instruction, we select all the critical
variables and store them in an allowable write target table,
which is later compiled into the TEE software (Section V-B).
To be able to repurpose DWT for efficient selective write
integrity enforcement, all critical variables must be stored in
contiguous memory ranges, regardless of whether they are on
the stack, on the heap, or in global memory. Our critical
variable relocation module (Section V-C) achieves this. At
runtime, accesses to critical variables trap to the secure world
exception handler, which checks whether the write is legitimate
according to the allowable write target table (Section V-D).

Threat Model We consider an attacker who can feed arbitrary
data to an I/O interface of the target device, either remotely
(e.g., over the network) or locally (e.g., over the UART inter-
face). The firmware contains memory-related vulnerabilities
in either the kernel or application code. Therefore, attackers
can bypass mitigations enforced by kernel, e.g., memory

isolation with MPU. We focus on protecting critical variables,
which are critical for the correct operation of many cyber-
physical systems and IoT applications [19]. Numerous existing
studies [41], [29], [32], [2], [20] have shown that this is
a real threat. We do not consider protecting code pointers,
as considerable orthogonal work on CFI of MCU devices
exists [85], [7]. We assume such protection is already in place.
We also assume the trusted software in the TEE is bug-free
and isolated from the normal-world firmware, as important
metadata such as the allowlist is stored there. Considering the
small code base of the TEE-side software and the limited attack
surface, this is a reasonable assumption, well accepted by
existing TEE-based work [76], [59]. We do not consider low-
level physical attacks, such as connecting to a JTAG debugger
to re-program the firmware. Since MCU devices typically run
on SRAM, RowHammer attacks that mainly target dynamic
memory (DRAM) are out of scope. Finally, we assume our
compiler passes are free of bugs.

V. DESIGN

A. Critical Variable Selection
Full data flow integrity is expensive, and not viable

on resource-constrained embedded systems. To enable effi-
cient data integrity, our approach employs a selective mech-
anism. Generally, selecting variables heavily depends on
application-specific semantics and protection goals. For ex-
ample, DynPTA [60] proposes to selectively protect secrets
(e.g., private key) in SSL programs, Samurai [61] proposes to
protect heap metadata in malloc/free APIs, and KENALI [72]
proposes to protect access-control related data in a kernel. In
our design, we assume critical variables have been provided
as such, either manually by the programmer using explicit
annotations, or using an automated system. Determining which
variables are critical and should be selected is orthogonal to
our work, and this is not part of our contribution.

Existing works offering selective protection [19], [17], [76],
[82] offer empirical guidance to help select critical variables.
Among these, two notable semi-automatic tools [17], [76]
are available. The approach involves two steps: 1) building
an initial set based on manually specified variables, and 2)
expanding this set by adding new variables that may influence
the initial set using the data dependency graph. In our imple-
mentation, we have integrated one such tool – OAT [76], which
is open source and also targets embedded programs, for ease
of development. We still need to specify an initial variable set
manually to use the tool. For this goal, we use the following
high-level guidance: 1) all global variables are selected for
their long lifetime, 2) variables with important semantics, e.g.,
authentication data, control command, etc., are also selected.
Other details are elided as it is the same with existing work.

B. Allowable Write Target Extraction
Our next step is to determine which parts of the code can

legitimately write to critical variables (CVs). We then create a
lookup table that will be used subsequently for enforcing write
integrity.

6

Compile-time Run-time

Source
Code

LLVM IR

Normal World

...

Legitimacy Checker

Allowable Write
Target Table

lookup

Secure World

Critical Variable
Selection

Allowable Write
Target Extraction

Critical Variable
Relocation

Store Instruction
Transformation

Critical Variable
Write

Firmware Context Recovering

...

Fig. 2: Workflow of InvisiGuard.

This step starts by extracting an initial set of critical
variables (CVs) from a combination of manually annotated
variables and global variables (see Section V-A). Our compiler
automatically expands this initial set of CVs. The expansion
process primarily takes into account other variables that can
influence the value of CVs, such as directly assigning another
variable to a CV. Specifically, our custom compiler first con-
structs a data dependency graph, which is then used to extract
CVs’ dependent variables, following a backward traversal for
each CV. These dependent variables will be included in the
set. We further use standard Andersen’s points-to analysis to
construct a global points-to map. If any pointers in the map
can point to CVs, we also include these pointers in the set.
The expansion process is iterative and continues until the set
of CVs stops growing.

We then iterate through all write operations in the program’s
intermediate compiler representation, including both direct
memory stores and compiler intrinsics that perform stores
(such as memcpy and strcpy). For each write operation, we
determine whether it can target a critical variable (CV) and, if
so, we consider the instruction to be critical. We construct an
allowable write target table that maps each critical instruction
to a set of critical variables they can write to. This is a hash
table indexed, by the address of the critical instruction. We
represent critical variables by assigning to each variable a static
identifier, denoted as VarID. Note that at runtime, a VarID can
represent multiple dynamically allocated instances of an object.
Our table contains a list of permissible VarIDs for each write
instruction.

We use Listings 2 and 3 to demonstrate our approach.
In Listing 2, we first identify criVar as a critical variable
because of the manual annotation. Then, our points-to anal-
ysis performs precise tracking of four types of operations,
namely “address”(p=&q), “copy”(p=q), “load”(p=*q), and
“store”(*p=q), to propagate and update points-to information.
We perform this analysis at both inter-procedural and intra-
procedural levels, which allows us to construct a comprehen-
sive global points-to map. Using this map, we can determine
that pointers ptr1, ptr2, and ptr3 point to the same
memory location as the variable criVar. Because they can
write to criVar, InvisiGuard considers the store instructions
at lines 2 and 12 to be critical stores. In Listing 3, we
can determine that example->ptr can point to the same

1 void modify_ptr(int *ptr3) {
2 *ptr3 = 10;
3 }
4
5 int __attribute__((annotate("critical"))) criVar;
6 int *ptr1 = NULL, *ptr2 = NULL;
7 ptr1 = &criVar;
8
9 modify_ptr(ptr1);

10
11 ptr2 = ptr1;
12 *ptr2 = 10;

Listing 2: Code snippet to demonstrate how indirect access
works when pointers from both intra-procedural and inter-
procedural scenarios.

1 int __attribute__((annotate("critical"))) criVar;
2 int b;
3 struct example { int *ptr; } *example;
4 b = 100;
5 example = malloc(sizeof(struct example));
6 example->ptr = &cv;
7 /* ... */
8 *example->ptr = b;

Listing 3: Code snippet to demonstrate how to obtain allowable
write target table.

memory location as criVar using the global points-to map.
We expand the set of critical variables to include variable b
due to line 8, where criVar can be set to b. Consequently,
InvisiGuard safeguards two critical variables, namely b and
criVar, assigning each a unique VarID. InvisiGuard then
determines the allowable write targets for each critical store
instruction. Specifically, the allowable write target of store
instruction in line 4 is VarID of the variable b, and the target of
line 8 is VarID of the variable criVar. Using InvisiGuard to
analyze the code, we successfully obtain the expected results.

C. Variable Relocation
Due to the limited number of comparators in DWT (see

Section II), we cannot monitor a large number of variables if
they are scattered across the address space of the firmware. We
address this issue by relocating all critical variables to a single
memory region called GuardedZone. InvisiGuard prevents any

7

illegal write attempts to this zone. A critical variable can
appear in any of the stack, heap, or data/BSS segments.
Correspondingly, we split GuardedZone into three sub-regions,
as shown in Figure 1.

Critical Variables on Stack and Heap We treat critical stack
variables as dynamic objects. That is, they are allocated on
the heap on function entry and de-allocated on function exit.
Together with the original critical heap variables, they are
stored in a sub-region of GuardedZone. The heap manager
which manages both critical stack variables and heap variables
is implemented based on FreeRTOS heap 2 [8], a lightweight
heap implementation. The metadata used to manage the heap
is always marked as critical and is not an allowable write target
for any non-TrustZone code.

Critical Variables in Data and BSS Segments Critical
global variables are allocated in a dedicated data segment
(_critical_data) or a BSS segment (_critical_-
bss). These two segments are mapped to two separated sub-
regions of the GuardedZone. Following the common practice
in MCU programming, during booting, the chip initialization
code needs to copy _critical_data from flash to the
corresponding sub-region and to zero out the sub-region for
_critical_bss.

Tracking Object Bounds The secure world needs to maintain
the memory ranges for each critical variable. For global
variables in the data/BSS segments, we directly get their
static boundary information {varID : (base, bound)} from
the symbol table. For critical variables on the heap or stack,
since they are allocated on demand, their boundary information
must be reported to the secure world dynamically. As such,
we implement trusted_malloc and trusted_free as
secure functions in TrustZone, which we use to handle both
the heap and stack objects. Note that, although these functions
run in the secure world, they manage non-secure heap mem-
ory for the normal-world firmware. This design leads to an
important performance advantage: since a heap manager has
to access heap memory to manage metadata, if we implement
it in the normal world, numerous DWT exceptions would be
unnecessarily triggered. In contrast, implementing it in the
secure world suppresses such exceptions. This is because, in
the secure world, we are free to manage DWT watchpoint
configurations. Specifically, before storing the metadata, we
configure the DWTs to disable the watchpoint mechanism on
the memory being written to and enable it once the writes are
completed.

D. Write Integrity Check in TEE
We configure watchpoints to deliver an exception to our

secure-world handler on any write attempt to the GuardedZone.
InvisiGuard performs a legitimacy check in the debug monitor
handler in the secure world. The secure world can access the
monitored memory without triggering exceptions. Our threat
model assumes a powerful attacker who can arbitrarily write
anywhere. To prevent them from disabling DWT at runtime,
we use TrustZone to restrict access to DWT registers in the
normal world after system initialization. We also use TrustZone

to prevent attackers from manipulating the secure runtime,
including the implementation of the debug monitor handler
and the runtime data such as the allowable write target table
and boundary information of critical variables.

Inside the handler, we need to 1) recover the addresses of
responsible write instruction as well as the write target, and
2) look them up in the allowable write target table to decide
whether the access should be allowed or not. Since the handler
runs in the secure world and maintains runtime information,
we call it and the associated code and data structures secure
runtime in this work.

Recovering Addresses of Write Instructions & Targets
From Exception Context As with any other architecture,
exception context contains rich information related to the pre-
exception processor state. We need to recover the address of
the responsible write instruction as well as the write target from
it. In ARM Cortex-M processors, on taking an exception, the
hardware stores processor context onto the pre-exception stack.
This operation is referred to as stacking, and the processor
context stored in the stack is referred to as an exception
stack frame. The exception stack frame includes the following
register values at the time when an exception is taken: R0-R3,
R12, LR, PC, xPSR, and floating point registers if the floating
point is active. Here, the value corresponding to PC register is
the address to return to when the exception is completed.

It seems straightforward to use the value corresponding
to PC register as the address of the write instruction, as it
should point to the instruction responsible for the exception.
Unfortunately, the debug monitor exception is asynchronous,
so the timing of the exception is not necessarily right after
the monitored memory is accessed. Therefore, the processor
context stored on the exception stack frame may not directly
contain the information we are interested in. Based on our
observation, there is a delay of at most two instructions. This
also agrees with the pipeline design of the Cortex-M core; the
manual [9] states explicitly that the maximum delay is two
instructions (in §4.7). As such, the address of the faulting write
instruction is within three instructions backward along the
execution trace from the PC value obtained from the exception
stack frame. If there exists a branch instruction among these
instructions, it becomes hard to backtrace the original jump
site and thus the write instruction.

We address this challenge by injecting two NOP instructions
(i.e., MOV R0, R0) after every critical write instruction. As
a result, the secure runtime only needs to linearly search
for the nearest write instruction backward from the address
obtained from the exception stack frame. We argue that it is
very difficult, if not impossible, to launch an effective attack
within two delayed instructions in practice. For example, it is
rare that a critical variable is used immediately after a data
corruption point.

There are a few corner cases to consider when the de-
bug monitor exception is triggered by a non-critical write
instruction that writes to a critical variable (due to memory
errors). First, if a critical write instruction follows the non-
critical write instruction immediately, our backward searching
algorithm may fail to locate the real write instruction. Consider

8

the code snippet in the Listing 4. Normally, the first write_-

1 write_non_critical value1 addr1
2 write_critical value2 addr2
3 NOP
4 NOP

Listing 4: An example for potential bypass.

non_critical would write to non-critical variables, and
second write_critical would write to critical variables.
However, due to data corruption, the first write_non_-
critical now writes to a critical variable, which will then
trigger a DWT interrupt and incur a delay, and stop at the first
NOP instruction for example. As a result, InvisiGuard would
recover and identify the responsible write instruction being
the second write_critical instruction, which is allowed
to modify the critical variable. This may lead to a possible
bypass. To solve this problem, for each critical write, we check
whether its previous two instructions contain a non-critical
write. If so, we also insert two NOPs after the non-critical write
instruction. For this example, InvisiGuard adds two NOPs after
the first write_non_critical instruction. Second, since
non-critical write instructions are not instrumented, our method
may fail to locate a write instruction at all. If this happens, an
alert is given. Third, if we find a write instruction, we check
whether it is indeed a critical write instruction. Otherwise,
it generates an alert. The user can also configure what to
do depending on the specific scenario, including aborting the
program, dropping privileges or just recording the alert.

After obtaining and confirming the address of the critical
write instruction, we recover the address of the write target.
We disassemble the write instruction and calculate the target
address based on its addressing mode. ARM offers multiple
addressing modes [10] (e.g., scaled, pre/post-indexed, etc.),
some of which involve complex address calculations (e.g., bar-
rel shifter). To avoid unnecessary complexity, we enforce
restrictions in the compiler backend when emitting code for
critical write instructions. In particular, the addressing mode
is always the simplest one, in which the target address is
calculated by adding an immediate offset to a base register.
Assuming this encoding, we can quickly recover the target
address. It is worth noting that only using simplified encoding
generates less efficient code. However, this only applies to
critical write instructions.

Checking Write Targets Against the Allowable Write
Target Table To validate a write instruction, the secure runtime
needs to check the write target against the allowable write
target table. However, there is a gap between the two—the
written targets obtained previously are actual addresses while
the allowable write targets are a list of VarIDs. To bridge this
gap, the secure runtime maintains the memory ranges for each
VarID at runtime. As such, the check can be performed by
matching the address against a list of memory ranges.

We maintain the memory ranges for each VarID using
different strategies depending on the variable types. For global
variables, a variable always maps to a fixed location. Therefore,
the memory range is static and extracted from the symbol

table. For heap and stack variables, since they are dynamically
managed, we instrument all their allocation points, so that the
memory ranges are always reported to the secure runtime. Note
that one VarID could map to multiple instances of the same
object when they are dynamically allocated.

Library Functions In addition to individual memory write
instructions, libc functions such as memcpy and strcpy
also access critical variables. They are recognized as memory
intrinsic functions in LLVM. We do not instrument store
instructions inside these functions and run them in the normal
world, because doing so will generate an excessive number
of exceptions. We instead replace these library functions with
secure functions implemented in the secure world, leading
to two performance improvements. First, the security check
can be conducted at function entry for the entire target buffer
instead of individual bytes. Second, individual store instruc-
tions will not generate exceptions since they run in the secure
world. When performing legitimacy checks, the secure runtime
can directly obtain the address of the write target from the
parameters. To recover the address of the call to memory
intrinsic functions (i.e., BL memcpy), we leverage the intra-
procedure call scratch register R12, which is safe to use before
any function calls.

VI. EVALUATION

We implemented a prototype of InvisiGuard on top of
LLVM 10.0, with about 3,300 source lines of code (SLOC),
excluding the reused code. Our points-to analysis is based
on SVF [75], and we reused some code for selecting critical
variables from OAT [76] and backend analysis from Silhou-
ette [85]. Our prototype runs on a popular ARM development
board, the STM32L562E-DK discovery kit. It is equipped with
an ARM Cortex-M33 core with TrustZone and DWT support,
integrating a 512 kB Flash memory and a 256 kB SRAM.
We did not use any board-specific features. Therefore, our
prototype can be easily ported to other ARM Cortex-M chips.

Experiment Setup We evaluated our prototype against seven
real-world firmware samples. The results are compared with
OAT (with only CVI enabled) [76] and the baseline mea-
surement obtained from running the firmware without any
protection. CVI is the state-of-the-art solution for protecting
critical variables in deeply embedded systems. We extracted
the reported performance data from related work [5], [17],
[61] and found CVI has the lowest overhead. All experiments
were conducted on the same development board.

For a fair comparison, we used the same static analysis tool
to identify and extend critical variables. In this way, both OAT
and InvisiGuard protect the same set of critical variables. We
first measured how our compiler pass performs in extending the
initial critical variables and associating them with the critical
store instructions (Section VI-A). Then, we measured the
imposed performance and memory overhead (Sections VI-B
and VI-C). Finally, we validated the effectiveness of Invisi-
Guard by running manually crafted exploits to corrupt critical
variables. Our attack also tried to write to DWT registers to
disable InvisiGuard directly (Section VI-E).

9

Firmware Samples We tried to evaluate with the same set
of firmware samples that come with OAT. Unfortunately, this
turned out to be more challenging than expected. Specifically,
while OAT was designed for Cortex-M devices, the authors
implemented their prototype on a Cortex-A device due to the
lack of TrustZone-M devices at that time. As a result, two
of their firmware samples that involve some POSIX APIs
cannot be easily ported to any MCU runtime. Nevertheless,
we included the remaining three samples in our evaluation. We
additionally collected four more firmware samples commonly
used in related work (e.g., [7], [4], [21]). The average size of
these samples is 107.63 kB (compiled with default compiler
options). They appear to be small in size compared with
traditional software. However, we found in the source code
very complex operation logic, common C/C++ programming
features such as pointers, indirect calls, aliases, and also some
complex algorithms such as SHA256. Based on another recent
study on firmware security [83], the average size of real-world
MCU-based BLE firmware is less than 122.7 kB. Therefore,
these samples represent a reasonable level of variety, covering
application scenarios such as ICS and smart homes. The details
of each sample are explained below.

• Syringe Pump [62] has been explained in our motivat-
ing example.

• Light Controller [40] is used to control the switches in
smart homes. It parses user input to locate the device
and take actions (e.g., turn on/off).

• Alarm [23] is used for automated environmental mon-
itoring. It reads data from presence-detection sensors.
When user-specified conditions are met, it will trigger
an alarm.

• PinLock [21] runs on a smart lock. It receives a PIN
input from a user and performs a SHA256 hash calcu-
lation to get a 32-byte hash value. Then the hash value
is used to compare with a pre-computed value. If they
match, it performs unlock function.

• RF Door Lock [34] is similar to PinLock but with a
different control logic. It directly compares user inputs
with the stored password and performs the requested op-
eration (e.g., opening the door, changing the password,
etc.).

• Steering Control [48] is used in the field of autonomous
driving. It receives commands from a user to control the
angle of the steering wheel and the throttle of a vehicle.

• PID controller [24] is widely used in industrial con-
trol systems. In each scan cycle, it reads inputs from
sensors, calculates proportional, integral, and derivative
responses, and uses the responses to drive the actuators.

A. Accuracy of Static Analysis
Our analysis pass identifies critical variables to be pro-

tected and correlates them with store instructions. Therefore,
its soundness and completeness are critical for the secure
operation of firmware at runtime. If we miss checking a
critical variable, the attacker could corrupt it without being
detected. On the other hand, if our allowlist is incomplete,
legitimate access could be blocked. Considering that MCUs

TABLE II: Statistics on critical variables (CVs) and critical
stores (CSs).

Firmware # Initial
CVs

Extended
CVs

CSs Identified
by InvisiGuard

CSs Identified
by OAT

Syringe Pump 31 42 55 51
Light Controller 16 22 21 19
Alarm 10 10 11 10
PinLock 13 18 84 42
RF Door Lock 10 10 35 14
Steering Control 8 8 15 15
PID controller 4 12 54 23
Avg. 13.14 17.57 39.29 24.86

TABLE III: Statistics on # of all writes, # of allowable writes
and percentage of reduced writes that may be maliciously used
to tamper the critical variable.

Firmware # Allowable
writes

All
writes

Reduced
writes (%)

Syringe Pump 55 4701 98.83%
Light Controller 21 4659 99.55%
Alarm 11 4600 99.76%
PinLock 84 11,814 99.29%
RF Door Lock 35 4682 99.87%
Steering Control 15 4917 99.69%
PID controller 54 11,295 99.52%
Avg. 39.29 6667.14 99.42%

are commonly used in mission-critical applications that cannot
tolerate unexpected suspensions (due to false positives), our
implementation follows a conservative construction that may
relax the allowlist. In general, static analysis including alias
analysis is an undecidable problem [46]. Therefore, rather
than formal proof, this section presents our empirical study on
the performance of InvisiGuard’s analysis pass in expanding
critical variables and constructing the allowlist and discusses
its implication to security.

In Table II, we show the number of critical variables
that we manually annotated (e.g., authentication hash, PID
parameters, etc.), the number of extended critical variables
after analysis, along with the store instructions associated with
them. As shown, our implementation added a moderate number
of additional critical variables (4.43 on average) due to variable
expansion. Meanwhile, InvisiGuard identifies more critical
store instructions than OAT does (39.29 vs. 24.86). Note
that InvisiGuard needs to recover critical store instructions
to construct the allowlist, while OAT needs it to trace the
data flow. This suggests that there are deficiencies in OAT’s
implementation, which we will elaborate on in the analysis of
false positives.

False Negatives Our current static analysis is neither context-
sensitive nor field-sensitive, which means a write instruction
could be associated with multiple write targets, not all of
which are legitimate in every context. As a result, attackers can
illegally corrupt any critical variable in the allowlist using the
same critical write instruction. For example, in the Pinlock
firmware, the function mbedtls_sha256 is invoked twice.
The two outputs are stored in key and key_in, which are

10

supposed to hold the hash values calculated from the expected
(and thus correct) PIN and the received PIN, respectively.
Since our analysis cannot differentiate the calling context,
InvisiGuard has to allow mbedtls_sha256 to write to both
key and key_in at all time. As another example, in PID
controller, the TPID variable includes 19 different fields.
Since our analysis is field-insensitive, we allow any store
instructions that can access TPID to access any field. In both
cases, attackers can bypass InvisiGuard because they can write
to critical variables that should not be accessible. Fortunately,
attackers are still limited to using an existing critical store
instruction to exploit this weakness. Table III demonstrates the
security performance in analysis considering false negatives.
Even in the worst-case scenario, where the attackers can
exploit all the allowable critical stores, InvisiGuard can still
detect any non-critical stores attempting to write to the critical
variables. On average, InvisiGuard reduces the attack surface
of critical variables by 99.42%. This indicates that in practice,
attackers can hardly launch an effective exploitation against
this weakness. Given that both OAT and InvisiGuard rely on
context-insensitive and field-insensitive analysis, they exhibit
similar security performance in terms of design. However,
InvisiGuard incurs lower overhead compared to OAT (Section
VI-B and VI-C).

False Positives A false positive happens when InvisiGuard
does not construct an allowlist for a critical store instruction or
maintains an incomplete allowlist. If this happens, a legal store
would falsely trigger a security alert. Based on our empirical
study, we never observed any such false alerts. This indicates
that our points-to analysis performs well in the evaluated
firmware. In contrast, OAT failed to execute six out of the
seven samples. As shown in Table II, OAT found less critical
store instructions on the same set of critical variables (24.86
vs. 39.29 on average). As a result, it misses instrumentation to
correctly track the value flow. The root cause is that OAT does
not resolve indirect calls nor trace pointers across functions,
while InvisiGuard does. We have communicated this issue with
OAT authors but it seems that there is no easy fix to their
implementation.

Despite the encouraging results, there is no guarantee that
our implementation will scale well to unforeseen firmware,
due to the fundamental problems with static analysis. For
example, our implementation may fail indirect call resolutions
if a pointer is a formal argument in a callee function without
any caller [74]. To mitigate this problem, the secure runtime
should collect as much information about the alert context as
possible. Such information can be invaluable for developers to
diagnose the problem and manually suppress false alerts.

B. Performance Overhead
MCU firmware runs in an infinite loop, with each loop com-

pleting an operation. To evaluate the performance overhead, we
therefore measured the time to complete one operation cycle.
For example, in the Syringe Pump firmware, we measured the
time from receiving user input to finishing the dispensation.
To measure the execution time cost in a firmware-independent
way, we implemented a high-resolution timer based on DWT.

Recall that DWT also supports program profiling. In our
implementation, we leveraged DWT_CYCCNT that can record
the cycle number for a period of execution.

To mitigate performance bias caused by different implemen-
tations, the define-site and use-site instrumentation in OAT was
corrected by the points-to analysis of InvisiGuard. Moreover,
we applied the same optimization to OAT so that memory
intrinsic functions do not need to trap in the secure world
multiple times.

For OAT, we recorded the number of triggered instru-
mentation at define-sites and use-sites of critical variables.
Each instrumentation traps the execution to the secure world.
For InvisiGuard, we recorded the number of triggered le-
gitimacy checks, including debug monitor exceptions and
memcpy invocations. Invocations to trusted_malloc and
trusted_free were also recorded since they are imple-
mented in the secure world. We executed each firmware sample
ten times, and we took the average over the runs. Table IV
shows the results. In calculating the overall overhead, we used
geometric means over all the firmware samples to mitigate
issues with different baselines [79].

The average runtime overhead of InvisiGuard is 2.74%,
compared with 6.37% in OAT. InvisiGuard costs less than
OAT in all samples, reducing runtime overhead by 56.99%
on average. However, it is more expensive for InvisiGuard to
complete a check in the secure world than OAT (7.11 µs in
InvisiGuard vs. 4.72 µs in OAT on average). In particular,
recovering the address of the write target involves complex in-
struction decoding. We further provide a breakdown analysis of
the overhead. The overhead mainly comes from three aspects:
1) recovery of addresses of write instructions and targets from
the context of the exception, 2) legitimacy checks against the
allowlist, and 3) dynamic memory management in the secure
world. Table V shows the percentage of each part. It can be
seen that the cost of legitimacy check is the largest, followed
by address recovery and memory management. Meanwhile,
legitimacy check and address recovery account for majority
of the overhead (91.23%). The address recovery overhead is
about 31.35%, which means that with hardware support for
recovering addresses, our overhead could be further reduced
by ˜30%.

The main reason why InvisiGuard outperforms OAT is that
OAT triggers significantly more traps to the secure world than
InvisiGuard did (2.5x - 39.2x, 8.8x on average). This huge
difference outweighs the higher overhead of InvisiGuard in
individual secure-world handling. Indeed, InvisiGuard only
needs to perform the legitimacy check when necessary. More
specifically, the hardware only traps the execution to the
secure world when a critical variable is really being written.
Furthermore, OAT needs to trap both the define-sites (to record
the value) and use-sites (to check the value), while InvisiGuard
only needs to trap the define-sites on demand. Reading the
table, the number of use-sites is much larger than that of
def-sites. This means OAT traps in the secure world more
frequently. These statistics also agree with the results reported
in related work [51], [17].

Finally, to demonstrate InvisiGuard’s robustness and scala-
bility, we conducted two experiments with intensive loads –

11

TABLE IV: Performance overhead.

Firmware Baseline OAT InvisiGuard
Time (cycles) # Use # Def Overhead # Legitimacy Check # trusted malloc/free Overhead

Syringe Pump 102,752,850 14,408 377 6.81% 377 258 0.17%
Light Controller 220,904,123 6,900 1,130 1.74% 1,130 150 0.52%
Alarm 5,441,524 574 362 8.32% 362 8 3.76%
PinLock 23,675,299 3,588 1,597 9.94% 1,597 56 5.86%
RF Door Lock 11,748,938 407 226 2.64% 226 4 1.27%
Steering Control 13,866,606 77 24 0.28% 24 6 0.21%
PID Controller 312,992 52 35 15.70% 35 14 7.64%
Geometric Mean - - - 6.37% - - 2.74%

TABLE V: Overhead breakdown of InvisiGuard (numbers are
percentage).

Firmware Legitimacy
Check

Address
Recovery

Memory
Management

Syringe Pump 63.54 26.82 9.64
Light Controller 62.24 26.27 11.49
Alarm 53.91 40.79 5.30
PinLock 61.96 31.64 6.40
RF Door Lock 50.69 44.39 4.92
Steering Control 60.72 21.10 18.18
PID Controller 59.16 30.74 10.37
Geometric Mean 59.88 31.35 8.77

monitoring ALL the variables in the PID algorithm from the
PID controller firmware and ALL the variables in the SHA256
algorithm from the PinLock firmware. The PID algorithm
involves 19 variables and 69 critical stores, while the SHA256
algorithm involves 19 variables and 206 critical stores. With
manual checks, we confirm that all the write operations to
the annotated variables were precisely caught and checked.
Compared to OAT, the performance overhead was 40.52% vs.
172.67% in the SHA256 algorithm and 11.19% vs. 17.25% in
the PID algorithm. We can see that InvisiGuard still performs
better in both tested samples, and this also demonstrates the
robustness of the implementation of InvisiGuard.

C. Memory Overhead
We evaluated memory overhead in terms of RAM consump-

tion and flash consumption. The results are shown in Table VI.

RAM Overhead For both solutions, the RAM overhead
mainly comes from the runtime data maintained in the secure
world. Notably, InvisiGuard compiles the allowable write
target table into the secure runtime as a hashmap. Moreover,
the variable bounds table is also dynamically maintained. In
contrast, OAT needs to store the recorded values for each
occurrence of all critical variables. As shown in the table,
the RAM overhead of InvisiGuard is 27.48% on average,
compared to 121.41% in OAT. The key factor leading to the
difference is that the hashmap in InvisiGuard is indexed by
variable IDs, whereas the hashmap is indexed by the variable
address in OAT. A variable ID can correspond to multiple
instances at runtime. In addition, we note that while the ratios

appear to be high due to the small size of the firmware, the
absolute overhead is not (4.68KB for OAT vs. 1.11KB for
InvisiGuard).

Flash Overhead The flash memory is mainly used to store
code and read-only global data. We separate the secure runtime
from the target firmware in evaluating flash overhead. For
the target firmware itself (non-secure part), both InvisiGuard
and OAT exhibit negligible overhead, although InvisiGuard
consumes slightly less flash memory than OAT. InvisiGuard
introduces additional code mainly due to the inserted NOPs and
store instruction restriction. OAT introduces additional code
due to instrumentation on define-, and use-sites. Regarding the
secure runtime implementation, InvisiGuard uses more space.
The reason is that it needs to duplicate a heap manager to
the secure world for relocating critical variables. For both
systems, the overhead on the secure flash is constant. Overall,
the average flash overhead is 15.56% for InvisiGuard, and
12.55% for OAT.

D. Power Consumption
Low power consumption is a fundamental requirement for

low-end embedded devices, which are often powered by lim-
ited energy sources, such as batteries [77]. Power consump-
tion would be influenced by various factors, including CPU
clock frequency, workload, and connected peripheral devices,
among others [63]. Before measurement, we ensure that other
factors remain unchanged, such as keeping the same default
CPU clock frequency of 110 MHz. The only variable is the
running program. Our development board, the STM32L562E-
DK, embeds energy meter tools. Notably, it incorporates an
“on-board energy meter” interface, which facilitates convenient
power consumption measurement through a dedicated USB
interface (see Figure 3). The results are presented in Figure 4,
demonstrating that both OAT and InvisiGuard introduce negli-
gible overhead in terms of power consumption, with an average
of 1.35% for OAT and 1.12% for InvisiGuard.

E. Attack Detection
By enforcing integrity constraints on critical variables, In-

visiGuard greatly raises the bar for data attacks against MCU
firmware. In particular, attackers cannot take advantage of a
large number of non-critical writes directly. To validate this,

12

TABLE VI: Memory overhead.

Firmware RAM Consumption (kB) Flash Consumption (kB)

Baseline OAT (%) InvisiGuard (%) Baseline OAT
-secure

OAT
-nonsecure Overhead InvisiGuard

-secure
InvisiGuard
-nonsecure Overhead

Syringe Pump 4.19 116.47% 45.35% 83.78 12.52 85.95 17.53% 14.92 84.58 18.76%
Light Controller 3.77 147.48% 25.99% 79.99 12.52 81.14 17.08% 14.92 81.09 20.02%
Alarm 4.09 96.09% 5.87% 79.27 12.52 79.56 16.17% 14.92 79.66 19.31%
PinLock 3.96 128.03% 47.47% 242.55 12.52 244.41 5.93% 14.92 243.92 6.72%
RF Door Lock 3.46 132.08% 16.18% 78.89 12.52 79.57 16.73% 14.92 79.28 19.42%
Steering Control 3.77 116.89% 16.88% 86.99 12.52 87.68 15.18% 14.92 87.19 17.38%
PID Controller 3.86 116.32% 40.93% 189.22 12.52 191.20 7.67% 14.92 189.81 8.20%
Geometric Mean - 121.41% 27.48% - - - 12.55% - - 15.56%

Fig. 3: Power Consumption Measurement Setup.

Fig. 4: Power Consumption.

we conducted an attack detection experiment. Specifically,
we used PinLock as the attack target to demonstrate how
InvisiGuard can defeat exploitation attempts. The attack goal is
to bypass the authentication process to unlock the door without
credentials, or to disable InvisiGuard protection.

We intentionally introduced three vulnerabilities and devel-
oped corresponding exploits. They allow attackers to 1) over-
write a stack variable named lock_status, which is used in
the condition check before executing the unlock() function,
2) overwrite a global buffer named key, which holds the hash
value to check user PINs, and 3) write to the DWT control
register to disable DWT. These exploits were successful on the
unprotected firmware. After deploying InvisiGuard, the first
two exploits immediately triggered an exception and the secure
runtime raised an alert. Since InvisiGuard uses TrustZone-M
to present the normal world from manipulating DWT registers
(i.e., memory range 0xE0001020-0xE0001050), the third

exploit triggered a security exception and our runtime also
raised an alarm. As a result, we successfully defeated all these
attacks.

F. Security Analysis
Although we have successfully defeated attacks in section

VI-E, this does not mean that our solution is perfect. We further
examine the potential attack surface of InvisiGuard.

Our threat model anticipates that attackers may find and
exploit unknown vulnerabilities in the programs running in the
normal world. However, we assume that control flow hijacking
or modification cannot occur, as significant orthogonal work
on CFI for MCU devices exists [85], [7], [59], [43], and we
assume that such protection is already in place. Additionally,
we assume that the trusted software within the TEE is bug-free.
To maliciously tamper with critical variables (CVs), attackers
would need to achieve any of the following: ① write CVs
using non-critical stores, ② write CVs using critical stores, or
③ disable the protection mechanism of InvisiGuard.

① is eliminated. Since InvisiGuard is effectively deployed,
then any non-critical store on a CV will be easily detected,
because there is no non-critical store in the allowable write
target table. For ②, InvisiGuard raises the bar for successful
exploitation, but there remains some attack surface. On the one
hand, each critical store is limited in using its allowlists, so
it can not write other CVs, and thus we improve the security
of these CVs. On the other hand, our current static analysis
is neither context-sensitive nor field-sensitive. Therefore, a
critical store could be maliciously leveraged by abusing the
execution context or structure field in some circumstances.
However, as evaluated at Section VI-A, even in the worst-case
scenario, InvisiGuard can reduce the attack surface of critical
variables by 99.42%. Therefore, it is very hard for attackers
to launch an effective exploitation against this weakness.

③ is also ruled out. To achieve ③, attackers would need to: i)
Disable the Data Watchpoint and Trace (DWT) mechanism or
ii) Tamper with the metadata in the secure world. Considering
that the configuration of DWT is fully protected by the TEE,
option i) can be dismissed. Regarding option ii), attackers
would need to access metadata from the normal world and they
would: 1) Modify the metadata directly. However, since the
metadata is protected by the TEE, attackers cannot perform this
from the normal world. 2) Exploit debug monitor interruptions.
The only input used by the handler is stacked exception con-
text, which is saved by the hardware immediately after writing

13

a CV, and thus can prevent modification from any attackers.
Although there may be a delay of up to 2 instructions, as
discussed in section V-D, this delay is extremely challenging
to exploit. 3) Abuse the interfaces exposed to the normal world,
such as secure API calls (e.g., trusted malloc/trusted free and
trusted memcpy-style libraries). However, it is important to
note that these interfaces are hardcoded in the program, and
the attacker cannot access them through indirect calls, jumps,
or returns due to the existing CFI enforcement deployed.
Furthermore, these interfaces are free of bugs and include
additional security checks. For example, the trusted memcpy
function verifies the memory boundaries before performing a
copy. Therefore, this scenario is also improbable. As a result,
attackers can not achieve ③.

VII. DISCUSSION

Remaining Attack Surface Apart from the false negatives
discussed in Section VI-A, our current prototype does not
propagate implicit critical variables, which for example can
indirectly influence the value of an annotated variable by
changing the execution path. While deciding which variables
are critical is orthogonal to our work, it can be addressed
by using more advanced static analysis methods. Meanwhile,
InvisiGuard does not prevent attackers from reading credential
information from the system. Solutions like full data flow
integrity [5] and address sanitizers [51], [67] can potentially
provide more comprehensive data protection but imposes pro-
hibitive overhead. We leave this for future work.

Protecting an Excessive Number of Variables Protecting
an excessive number of variables may result in a greater
overhead. Nevertheless, we found no evidence of this issue
in any of our benchmarks. Furthermore, our experiments
demonstrated that even when all variables are protected, in
the worst possible case, the resulting overhead is not extreme
(Section VI-B). Critical variables are typically associated with
very specific features, such as authentication or authorization,
making it unlikely for a large number of genuine dependencies
to exist. Consequently, in the unlikely case – this issue were to
occur, it can likely be solved by improving the static analysis
techniques.

Evaluating CFI Protection Since CFI is not the focus of
this paper and its overhead only relates to instrumenting
checks at indirect jump sites (i.e., forward indirect jump
instructions and backward indirect jump instructions), it does
not influence overhead introduced by the CVI solution and
InvisiGuard, which only perform checks at specific store or
read instructions. Therefore, our evaluation does not measure
the overhead brought by integrating existing CFI solutions,
which is enough and fair to compare the overhead brought by
CVI solution and InvisiGuard.

Peripheral Protection Our prototype currently only protects
critical variables in memory, not memory-mapped peripheral
registers, which can also be critical. However, developers can
easily use the provided annotation interface to mark these
addresses. Then, InvisiGuard can use additional DWT registers

to monitor the corresponding MMIO addresses. Unfortunately,
unlike memory corruption, the damage caused by an illegal
MMIO write is immediate and unrecoverable. Nevertheless,
InvisiGuard can generate an alert if this happens. It is worth
noting that the value-based define-use check proposed in
OAT fundamentally cannot support this feature since MMIO
registers are volatile and thus no data-flow can be tracked.

Real-Time Constraints Some MCU-based devices need to
react to the environment under certain time constraints, which
may be broken by the overhead imposed by InvisiGuard.
However, as shown in our evaluation, such overhead is tiny
and predictable. As such, it can be accounted for before
deployment when real-time constraints have to be considered.

Performance Overhead InvisiGuard traps every writes to
critical variables. When a critical variable needs to be written
excessively (e.g., in a loop), the overhead grows. A straight-
forward solution is to complete the legitimacy check for a
piece of code all at once, instead of checking individual write
instructions, as we did for the memcpy function. This can
improve performance but requires case-by-case manual effort
or sophisticated static analysis to assist the process.

Production Consideration Currently, the meta-data is hard-
coded and should be updated with each firmware update.
However, we will design secure APIs so that the metadata can
be updated without updating the secure code. In this design,
we can wrap metadata with a cryptographic signature, and then
transmit the signed metadata to the secure world via a secure
API. In the secure world, the metadata signature first needs
to be cryptographically verified. If the signature is valid, the
metadata can then be used to update the allowlist. Otherwise,
the metadata should be rejected. This helps ensure that only
authenticated and authorized metadata can make security state
changes.

Leveraging Hardware Features The applicability of our
approach may be limited by the reliance on specific hardware
features – DWT and TEE. Specifically, i) the DWTs are
primarily designed for debugging purposes and are often
limited in number within microcontrollers. If a microcontroller
does not support this feature or undergoes future hardware
updates that render it incompatible with InvisiGuard, the
system may become unusable. However, InvisiGuard only
monitors a single range of memory and therefore requires
only a single pair of DWTs. By automatically remapping crit-
ical variables to this monitored memory, InvisiGuard enables
simultaneous monitoring of these variables. The watchpoint-
based monitoring mechanism, is the only convenient way to
debug applications where hardware, such as a motor, must
remain operational [66]. This feature is generally supported
by current mainstream MCUs, including ARM [11], RISC-
V [71], and MIPS [47]. Consequently, it is reasonable to
expect that future hardware updates will continue to support
this feature. Therefore, our approach holds potential benefits
across different platforms and remains compatible with future
hardware updates. Additionally, ii) our approach utilizes TEE
as a trust anchor (Root of Trust) to ensure the integrity and

14

confidentiality of important metadata. Although not every em-
bedded system can support a TEE, there are numerous existing
works, such as APEX [55], LIRA-V [69], GAROTA [6], and
ARM TrustZone [12] that offer similar trust anchors on low-
end embedded system. This sheds light on the feasibility and
applicability of our design in the future.

Secure Runtime Protection We assume that the secure run-
time, including the metadata maintained by it, is not vulnerable
to attacks. Although there have been real-world attacks to the
TrustZone on smartphones, this assumption is well-accepted in
academia [76], [64], [14], [33]. In practice, we can either adopt
a safer programming language such as RUST to implement the
secure-world software, or formally verify the interface between
the normal world and the secure world.

VIII. RELATED WORK

Data Protection DFI [18] and WIT [5] rely on static analysis
to extract a data flow graph. Then, instrumentation makes
sure that the memory access instructions follow the data
flow. Sanitizers [51], [67], [17], [53] track and check bounds
information of data objects at runtime. However, their overhead
is substantial (e.g., 44% to 103% in DFI, 73% slowdown in
AddressSanitizer [67]) and they are rarely used in production
environments except for in-house fuzzing. Furthermore, there
are numerous studies aiming at providing selective protection
[61], [17], [60], [76]. However, it is hard for them to prevent
widespread instrumentation and fully gain performance ben-
efits. InvisiGuard leverages a commonly available hardware
feature in a novel way by “freely” intercepting interesting
memory accesses, and significantly reduces overhead.

Security Solutions for MCU Devices The increasing preva-
lence of MCU devices also stimulates attackers’ interests. As
a result, many lightweight designs have been proposed to
protect MCU devices from exploitation. There is significant
research (e.g., APEX [55], LIRA-V [69], GAROTA [6], Re-
alSWATT [77]) proposing the construction of a trust anchor
suitable for low-end MCUs. The trust anchors—also com-
monly referred to as Roots of Trust (RoTs)— are categorized
as software-based, hardware-based, or hybrid (i.e., based on
hardware/software co-designs) [56]. Among them, APEX [55]
and LIRA-V [69] aim to guarantee the integrity of recorded
traces to prevent tampering, which is crucial for remote
attestation. GAROTA [6] goes even further by ensuring the
availability of real-time critical tasks, allowing desired actions
to be performed even if the software is fully compromised.
Similarly, RT-TEE [80] provides real-time system availability
guarantees for critical tasks, ensuring they are executed in
real-time as expected before their deadlines. However, RT-
TEE [80] achieves this by leveraging existing TrustZone hard-
ware support (ARMv8-A and ARMv8-M) instead of building
a trust anchor from scratch. While these approaches protect
MCUs, they do not specifically address protection against
certain attacks, such as control flow hijacking or data-only
attacks.

Based on a trust anchor, remote attestation has emerged as a
prominent research direction. It involves transmitting encoded

execution traces of firmware to a remote server, which then
verifies the accuracy of the execution. This includes control-
flow attestation (e.g., [4], [58], [54]), data-flow attestation
(e.g., [57]), and critical task/mission attestation (e.g., [81]),
etc. However, these forms of attestation are essentially offline
detection solutions, meaning that by the time an attack is
detected, damage may have already occurred to some extent.
Recently, Jakkamsetti [37] highlighted this limitation and
suggested a future research direction of low-overhead online
detection and prevention. InvisiGuard represents an effort in
this direction concerning data-flow integrity. As for online
protection, there has been more research on control flow
integrity then on data flow integrity for MCU devices, as
also pointed out in a recent survey by Mishra et al. [49].
CFI CaRE [59] and TZmCFI [43] enforce CFI by leveraging
TrustZone to implement a shadow stack mechanism. µRAI [7]
enforces backward CFI (return address integrity) by removing
the need to spill return addresses to the stack. Silhouette [85]
and Kage [26] introduce an incorruptible shadow stack using
store hardening. OAT [76] proposes CVI to enforce data-flow
integrity online. In contrast, InvisiGuard significantly reduces
this overhead with a novel design, combining TrustZone and
the data watchpoint mechanism.

Code diversity solutions [70], [22] mitigate attacks by bring-
ing non-determinism to the system. uXOM [45] implements
a software-based eXecution-Only Memory (XOM) for ARM
MCUs. ACES [21] and OPEC [86] support arbitrary compart-
mentalization policies for bare-metal systems. These solutions
re-enable many mechanisms that were only available on tradi-
tional platforms for MCU devices. InvisiGuard improves state-
of-the-art online data integrity solutions of MCU devices by
leveraging hardware features.

Hardware-Assisted Security DWT has been investigated be-
fore, but not for data integrity. PicoXOM [68] implements
XOM by leveraging DWT to prevent illegal reads from code
regions. While not directly designed for MCU devices, Jinsoo
et al. [38] propose using DWT to implement an efficient in-
process memory isolation mechanism and to harden the OS
kernel for mobile devices [39]. We are the first to use DWT
to enforce data integrity for MCU devices. TrustZone has also
been extensively used in recent work [59], [43], [70], [76],
[80]. We combine the two features to build a lightweight data
integrity solution for MCU devices.

IX. CONCLUSIONS

This work proposes a hardware-assisted approach for data
integrity. The key innovation lies in the fact that our approach
avoids expensive instrumentation-based data flow tracking with
the help of hardware, which passively monitors access to
critical variables. As a result, 1) security checking is triggered
only when necessary, and 2) all recognized critical vari-
ables are comprehensively monitored. Given that many cyber-
physical systems and industrial control systems are powered by
resource-constrained devices, it has become essential to protect
critical variables on these systems with sufficient efficiency.
Our prototype, named InvisiGuard, runs on ARM Cortex-M
based MCUs with TrustZone and DWT support. Our evaluation

15

results show that InvisiGuard can successfully detect and
thwart data-only attacks with low overhead.

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers
for their valuable feedback. This work is supported by
Beijing Tianjin Hebei basic research cooperation special
project of Natural Science Foundation of China (Grant
No.V1640354653903), Beijing Municipal Natural Science
Foundation (Grant No.L234033), and the US National Science
Foundation under grant CNS-2238264.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13, no. 1,
pp. 1–40, 2009.

[2] A. Abbasi and M. Hashemi, “Ghost in the plc designing an undetectable
programmable logic controller rootkit via pin control attack,” Black Hat
Europe, vol. 2016, pp. 1–35, 2016.

[3] A. Abbasi, J. Wetzels, T. Holz, and S. Etalle, “Challenges in Designing
Exploit Mitigations for Deeply Embedded Systems,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE,
2019, pp. 31–46.

[4] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-FLAT: Control-flow Attestation
for Embedded Systems Software,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 743–754.

[5] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with WIT,” in 2008 IEEE Symposium on Security
and Privacy (SP). IEEE, 2008, pp. 263–277.

[6] E. Aliaj, I. D. O. Nunes, and G. Tsudik, “GAROTA: Generalized
Active Root-Of-Trust Architecture (for Tiny Embedded Devices),” in
31st USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, 2022, pp. 2243–2260.

[7] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer, “µRAI:
Securing Embedded Systems with Return Address Integrity,” in Network
and Distributed Systems Security Symposium (NDSS), San Diego, CA,
2020.

[8] Amazon Web Services, Inc., “FreeRTOS Memory Management,”
https://www.freertos.org/a00111.html#heap 2, 2022, (Retrieved:
04/09/2023).

[9] ARM Ltd., “ARM Cortex-M Programming Guide to Mem-
ory Barrier Instructions,” https://documentation-service.arm.com/static/
5efefb97dbdee951c1cd5aaf, 09 2012.

[10] ——, “Armv8-M Architecture Reference Manual,” https:
//developer.arm.com/documentation/ddi0553/latest, 2022, (Retrieved:
04/09/2023).

[11] ——, “Data Watch Trace,” https://developer.arm.com/documentation/
ddi0439/b/Data-Watchpoint-and-Trace-Unit/DWT-functional-
description?lang=en, 2022, (Retrieved: 04/09/2023).

[12] ——, “Introduction to the armv8-m architec-
ture,” https://documentation-service.arm.com/static/
5f86dc74f86e16515cdb6be6?token=, 2022, (Retrieved: 04/09/2023).

[13] A. Ayub, H. Yoo, and I. Ahmed, “Empirical study of PLC authentication
protocols in industrial control systems,” in 2021 IEEE Security and
Privacy Workshops (SPW). IEEE, 2021, pp. 383–397.

[14] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection
from the arm trustzone secure world,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 90–102.

[15] G. Beniamini, “Over The Air: Exploiting Broadcom’s Wi-Fi Stack,”
Google Project Zero Blog, April 2017.

[16] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity,” in 24th
USENIX Security Symposium (USENIX Security 15). Washington,
D.C.: USENIX Association, 2015, pp. 161–176.

[17] S. A. Carr and M. Payer, “Datashield: Configurable data confidentiality
and integrity,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, 2017, pp. 193–204.

[18] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th symposium on Operating
systems design and implementation, 2006, pp. 147–160.

[19] S. Chen, J. Xu, and E. C. Sezer, “Non-Control-Data Attacks Are
Realistic Threats,” in 14th USENIX Security Symposium (USENIX
Security 05). Baltimore, MD: USENIX Association, 2005.

[20] A. Cherepanov, “WIN32/INDUSTROYER: A new threat for industrial
control systems,” White paper, ESET, June 2017.

[21] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “ACES:
Automatic compartments for embedded systems,” in 27th USENIX
Security Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, 2018, pp. 65–82.

[22] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, “Protecting bare-metal embedded systems with
privilege overlays,” in 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 2017, pp. 289–303.

[23] R. R. C. DDrazir, “Alarm system for home based on Raspberry PI 3,”
https://github.com/ddrazir/alarm4pi, 2016, (Retrieved: 04/09/2023).

[24] M. Derhambakhsh, “PID Controller library for ARM Cortex
M (STM32),” https://github.com/Majid-Derhambakhsh/PID-Library,
2022.

[25] Drifton A/S, Inc, “Digital Laboratory Syringe Pump dLSP500,”
https://www.drifton.eu/shop/24-syringe-pumps/2460-digital-
laboratory-syringe-pump-dlsp500/, 2023.

[26] Y. Du, Z. Shen, K. Dharsee, J. Zhou, R. J. Walls, and J. Criswell,
“Holistic Control-Flow Protection on Real-Time Embedded Systems
with Kage,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, 2022, pp. 2281–2298.

[27] L. Feng, J. Huang, J. Huang, and J. Hu, “Toward taming the overhead
monster for data-flow integrity,” ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), vol. 27, no. 3, pp. 1–24, 2021.

[28] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kurni-
awan, “SweynTooth: Unleashing Mayhem over Bluetooth Low Energy,”
in 2020 USENIX Annual Technical Conference (USENIX ATC 20),
2020, pp. 911–925.

[29] L. Garcia, F. Brasser, M. H. Cintuglu, A.-R. Sadeghi, O. A. Mohammed,
and S. A. Zonouz, “Hey, My Malware Knows Physics! Attacking
PLCs with Physical Model Aware Rootkit.” in Network and Distributed
Systems Security Symposium (NDSS), San Diego, CA, 2017.

[30] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding control flows using
intel processor trace,” ACM SIGPLAN Notices, vol. 52, no. 4, pp. 585–
598, 2017.

[31] A. Ginter, “The top 20 cyber attacks against industrial control systems,”
White Paper, Waterfall Security Solutions, 2017.

[32] B. Green, R. Derbyshire, M. Krotofil, W. Knowles, D. Prince, and
N. Suri, “PCaaD: Towards automated determination and exploitation of
industrial systems,” Computers & Security, vol. 110, p. 102424, 2021.

[33] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“Trustshadow: Secure execution of unmodified applications with arm
trustzone,” in Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services, 2017, pp. 488–501.

[34] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,
Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel
et al., “Toward the analysis of embedded firmware through automated
re-hosting,” in 22nd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2019), 2019, pp. 135–150.

https://www.freertos.org/a00111.html#heap_2
https://documentation-service.arm.com/static/5efefb97dbdee951c1cd5aaf
https://documentation-service.arm.com/static/5efefb97dbdee951c1cd5aaf
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit/DWT-functional-description?lang=en
https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit/DWT-functional-description?lang=en
https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit/DWT-functional-description?lang=en
https://documentation-service.arm.com/static/5f86dc74f86e16515cdb6be6?token=
https://documentation-service.arm.com/static/5f86dc74f86e16515cdb6be6?token=
https://github.com/ddrazir/alarm4pi
https://github.com/Majid-Derhambakhsh/PID-Library
https://www.drifton.eu/shop/24-syringe-pumps/2460-digital-laboratory-syringe-pump-dlsp500/
https://www.drifton.eu/shop/24-syringe-pumps/2460-digital-laboratory-syringe-pump-dlsp500/

16

[35] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic Gen-
eration of Data-Oriented Exploits,” in 24th USENIX Security Symposium
(USENIX Security 15). Washington, D.C.: USENIX Association, 2015,
pp. 177–192.

[36] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks,” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 969–986.

[37] S. Jakkamsetti, “Root-of-trust architectures for low-end embedded sys-
tems,” Ph.D. dissertation, University of California, Irvine, 2023.

[38] J. Jang and B. B. Kang, “In-process Memory Isolation Using Hardware
Watchpoint,” in 2019 56th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2019, pp. 1–6.

[39] ——, “Revisiting the arm debug facility for os kernel security,” in 2019
56th ACM/IEEE Design Automation Conference (DAC). IEEE, 2019,
pp. 1–6.

[40] J. Judin, “Light controller for controlling remote controllable
switches,” https://github.com/Barro/light-controller, 2016, (Retrieved:
04/09/2023).

[41] S. Kalle, N. Ameen, H. Yoo, and I. Ahmed, “CLIK on PLCs! attacking
control logic with decompilation and virtual PLC,” in Binary Analysis
Research (BAR) Workshop, Network and Distributed System Security
Symposium (NDSS), San Diego, CA, 2019.

[42] O. Karliner, “FreeRTOS TCP/IP Stack Vulnerabilities – The De-
tails,” https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-
details/, December 2018.

[43] T. Kawada, S. Honda, Y. Matsubara, and H. Takada, “TZmCFI: RTOS-
Aware Control-Flow Integrity Using TrustZone for Armv8-M,” Inter-
national Journal of Parallel Programming, pp. 1–21, 2020.

[44] M. Kol and S. Oberman, “19 Zero-Day Vulnerabilities Amplified by
the Supply Chain,” JSOF, White Paper, 2020.

[45] D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, “uXOM:
Efficient eXecute-Only Memory on ARM Cortex-M,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, 2019, pp. 231–247.

[46] W. Landi, “Undecidability of static analysis,” ACM Lett. Program. Lang.
Syst., vol. 1, no. 4, pp. 323–337, dec 1992.

[47] Lauterbach GmbH, “MIPS Debugger and Trace,” https:
//www2.lauterbach.com/pdf/debugger mips.pdf, 2022, (Retrieved:
04/09/2023).

[48] J. Mayer, “An arduino firmware that outputs a PWM signal for steer-
ing motor control via serial,” https://github.com/jabelone/car-controller,
2016, (Retrieved: 04/09/2023).

[49] T. Mishra, T. Chantem, and R. Gerdes, “Survey of Control-Flow
Integrity Techniques for Embedded and Real-Time Embedded Systems,”
arXiv preprint arXiv:2111.11390, 2021.

[50] E. Montalbano, “Hacker Tries to Poison Water Supply of Florida
Town,” https://threatpost.com/hacker-tries-to-poison-water-supply-of-
florida-town/163761/, 2021, (Retrieved: 04/09/2023).

[51] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for C,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2009, pp. 245–258.

[52] ——, “CETS: compiler enforced temporal safety for C,” in Proceedings
of the 2010 international symposium on Memory management, 2010,
pp. 31–40.

[53] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 27, no. 3, pp.
477–526, 2005.

[54] A. J. Neto and I. D. O. Nunes, “Isc-flat: On the conflict between control
flow attestation and real-time operations,” in 2023 IEEE 29th Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE,
2023, pp. 133–146.

[55] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, and G. Tsudik,
“APEX: A verified architecture for proofs of execution on remote
devices under full software compromise,” in 29th USENIX Security
Symposium (USENIX Security 20). Boston, MA: USENIX Association,
2020, pp. 771–788.

[56] I. D. O. Nunes, S. Hwang, S. Jakkamsetti, and G. Tsudik, “Privacy-
from-birth: Protecting sensed data from malicious sensors with versa,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 2413–2429.

[57] I. D. O. Nunes, S. Jakkamsetti, and G. Tsudik, “Dialed: Data integrity
attestation for low-end embedded devices,” in 2021 58th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2021, pp. 313–318.

[58] ——, “Tiny-cfa: Minimalistic control-flow attestation using verified
proofs of execution,” in 2021 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2021, pp. 641–646.

[59] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE:
Hardware-supported call and return enforcement for commercial mi-
crocontrollers,” in International Symposium on Research in Attacks,
Intrusions, and Defenses. Springer, 2017, pp. 259–284.

[60] T. Palit, J. F. Moon, F. Monrose, and M. Polychronakis, “Dynpta:
Combining static and dynamic analysis for practical selective data
protection,” in 2021 IEEE Symposium on Security and Privacy (SP).
IEEE, 2021, pp. 1919–1937.

[61] K. Pattabiraman, V. Grover, and B. G. Zorn, “Samurai: protecting
critical data in unsafe languages,” ACM SIGOPS Operating Systems
Review, vol. 42, no. 4, pp. 219–232, 2008.

[62] J. Pearce, “Open-source syringe pump,” https://www.appropedia.org/
Open-source syringe pump, 2016, (Retrieved: 04/09/2023).

[63] M. Pedram, “Power optimization and management in embedded sys-
tems,” in Proceedings of the 2001 Asia and South Pacific Design
Automation Conference, 2001, pp. 239–244.

[64] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36,
2019.

[65] Ryan, “Industrial Control Systems Killed Once and Will Again,
Experts Warn,” https://www.wired.com/2008/04/industrial-cont/, 2008,
(Retrieved: 04/09/2023).

[66] Segger Ltd., “Monitor mode debugging,” https://www.segger.com/
products/debug-probes/j-link/technology/monitor-mode-debugging/,
2023, (Retrieved: 04/09/2023).

[67] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A Fast Address Sanity Checker,” in 2012 USENIX Annual
Technical Conference (USENIX ATC 12), 2012, pp. 309–318.

[68] Z. Shen, K. Dharsee, and J. Criswell, “Fast Execute-Only Memory
for Embedded Systems,” in 2020 IEEE Secure Development (SecDev).
IEEE, 2020, pp. 7–14.

[69] C. Shepherd, K. Markantonakis, and G.-A. Jaloyan, “LIRA-V:
lightweight remote attestation for constrained RISC-V devices,” in 2021
IEEE Security and Privacy Workshops (SPW). IEEE, 2021, pp. 221–
227.

[70] J. Shi, L. Guan, W. Li, D. Zhang, P. Chen, and N. Zhang, “HARM:
Hardware-Assisted Continuous Re-randomization for Microcontrollers,”
in 2022 IEEE European Symposium on Security and Privacy (Eu-
roS&P). IEEE, 2022, pp. 520–536.

[71] SiFiv, Inc, “RISC-V Debug Specification,” https://github.com/riscv/
riscv-debug-spec/blob/master/riscv-debug-stable.pdf, 2022, (Retrieved:
04/09/2023).

[72] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity.” in Network and
Distributed Systems Security Symposium (NDSS), San Diego, CA, 2016.

[73] K. Stouffer, J. Falco, K. Scarfone et al., “Guide to industrial control
systems (ICS) security,” NIST special publication, vol. 800, no. 82, pp.
16–16, 2011.

[74] Y. Sui, “Question regarding the callgraph,” https://github.com/SVF-
tools/SVF/issues/732, 2022, (Retrieved: 04/09/2023).

https://github.com/Barro/light-controller
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://www2.lauterbach.com/pdf/debugger_mips.pdf
https://www2.lauterbach.com/pdf/debugger_mips.pdf
https://github.com/jabelone/car-controller
https://threatpost.com/hacker-tries-to-poison-water-supply-of-florida-town/163761/
https://threatpost.com/hacker-tries-to-poison-water-supply-of-florida-town/163761/
https://www.appropedia.org/Open-source_syringe_pump
https://www.appropedia.org/Open-source_syringe_pump
https://www.wired.com/2008/04/industrial-cont/
https://www.segger.com/products/debug-probes/j-link/technology/monitor-mode-debugging/
https://www.segger.com/products/debug-probes/j-link/technology/monitor-mode-debugging/
https://github.com/riscv/riscv-debug-spec/blob/master/riscv-debug-stable.pdf
https://github.com/riscv/riscv-debug-spec/blob/master/riscv-debug-stable.pdf
https://github.com/SVF-tools/SVF/issues/732
https://github.com/SVF-tools/SVF/issues/732

17

[75] Y. Sui and J. Xue, “SVF: interprocedural static value-flow analysis
in LLVM,” in Proceedings of the 25th international conference on
compiler construction. ACM, 2016, pp. 265–266.

[76] Z. Sun, B. Feng, L. Lu, and S. Jha, “OAT: Attesting Operation Integrity
of Embedded Devices,” in 2020 IEEE Symposium on Security and
Privacy (SP). IEEE, 2020, pp. 1433–1449.

[77] S. Surminski, C. Niesler, F. Brasser, L. Davi, and A.-R. Sadeghi,
“RealSWATT: Remote Software-based Attestation for Embedded De-
vices under Realtime Constraints,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021,
pp. 2890–2905.

[78] M. Team, “BadAlloc – Memory allocation vulnerabilities could
affect wide range of IoT and OT devices in industrial, medical, and
enterprise networks,” https://msrc-blog.microsoft.com/2021/04/29/
badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-
of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/,
April 2021.

[79] E. van der Kouwe, G. Heiser, D. Andriesse, H. Bos, and C. Giuffrida,
“SoK: Benchmarking flaws in systems security,” in 2019 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). IEEE, 2019,
pp. 310–325.

[80] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “RT-TEE: Real-time System
Availability for Cyber-physical Systems using ARM TrustZone,” in
2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 352–369.

[81] J. Wang, Y. Wang, A. Li, Y. Xiao, R. Zhang, W. Lou, Y. T. Hou, and
N. Zhang, “ARI: Attestation of Real-time Mission Execution Integrity,”
in 32nd USENIX Security Symposium (USENIX Security 23). IEEE,
2023, pp. 2761–2778.

[82] Z. Wang, H. Wang, H. Hu, and P. Liu, “Identifying Non-Control
Security-Critical Data in Program Binaries with a Deep Neural Model,”
arXiv preprint arXiv:2108.12071, 2021.

[83] H. Wen, Z. Lin, and Y. Zhang, “Firmxray: Detecting Bluetooth link
layer vulnerabilities from bare-metal firmware,” in Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 167–180.

[84] C. Yadin, “There’s More to Vulnerability Management than
CVSS score,” https://devicetotal.com/elementor-1180/, 2022, (Re-
trieved: 04/09/2023).

[85] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls, “Silhouette:
Efficient protected shadow stacks for embedded systems,” in 29th
USENIX Security Symposium (USENIX Security 20). Boston, MA:
USENIX Association, 2020, pp. 1219–1236.

[86] X. Zhou, J. Li, W. Zhang, Y. Zhou, W. Shen, and K. Ren, “OPEC:
operation-based security isolation for bare-metal embedded systems,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, 2022, pp. 317–333.

Dongliang Fang received the B.E. degree from
WuHan University, China, in 2017. He is currently
pursuing the Ph.D. degree with the Institute of Infor-
mation Engineering, Chinese Academy of Sciences,
China. His research interests include the security
of the Internet of Things and Industrial Control
Systems.

Anni Peng received the B.E. degree from Huazhong
University of Science and Technology, China, in
2017. She is currently pursuing the Ph.D. degree with
the National Computer Network Intrusion Protection
Center, Chinese Academy of Sciences, China. Her
research interest is network and system security.

Le Guan is an Assistant Professor of Cybersecu-
rity in the Department of Computer Science at the
University of Georgia, and a member of the UGA
Institute for Cybersecurity and Privacy. His research
interests cover a wide range of systems security,
including mobile security and IoT systems security.

Erik van der Kouwe is an Assistant Professor co-
leading the VUSec systems security group at the
Vrije Universiteit Amsterdam. He received his PhD
in software reliability from prof. Andy Tanenbaum,
and afterwards broadened hist scope to include
systems security. His recent work is on practical
compiler-assisted defenses against zero-day vulnera-
bilities and on properly benchmarking such defenses.

Klaus von Gleissenthall is an Assistant Profes-
sor in Computer Science at the Vrije Universiteit
Amsterdam, affiliated with the theory group and
VUSec. He works on methods that help practitioners
write correct, secure and reliable systems, where he
focuses on keeping user effort low. His research
interests span programming languages, security and
systems.

Wenwen Wang is an Assistant Professor in the
Department of Computer Science at the University
of Georgia. His research interests have spanned a
wide spectrum of criticaissues in computer systems
that cut across computer architectures, operating
systems,compilers, runtimes, and security.

Yuqing Zhang is a Professor of Computer Sciences
and the Director of the National Computer Network
Intrusion Protection Center at University of CAS.
His research interests include network and system
security, cryptography, and networking.

Limin Sun is a Professor with the Institute of
Information Engineering, Chinese Academy of Sci-
ences, China. He is also the Secretary General of
the Select Committee of CWSN and the Director
of the Beijing Key Laboratory of IoT Information
Security Technology. His main research interests
include the Internet-of-Things (IoT) security and
Industrial Control System security. He is an Editor
of the Journal of Computer Science and Journal of
Computer Applications.

https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://msrc-blog.microsoft.com/2021/04/29/badalloc-memory-allocation-vulnerabilities-could-affect-wide-range-of-iot-and-ot-devices-in-industrial-medical-and-enterprise-networks/
https://devicetotal.com/elementor-1180/

	Introduction
	Background
	Challenges
	Overview
	Design
	Critical Variable Selection
	Allowable Write Target Extraction
	Variable Relocation
	Write Integrity Check in TEE

	Evaluation
	Accuracy of Static Analysis
	Performance Overhead
	Memory Overhead
	Power Consumption
	Attack Detection
	Security Analysis

	Discussion
	Related Work
	Conclusions
	References
	Biographies
	Dongliang Fang
	Anni Peng
	Le Guan
	Erik van der Kouwe
	Klaus von Gleissenthall
	Wenwen Wang
	Yuqing Zhang
	Limin Sun

