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Abstract—As reliance on embedded systems grows in crit-
ical domains such as healthcare, industrial automation, and
unmanned vehicles, securing the data on micro-controller units
(MCUs) becomes increasingly crucial. These systems face sig-
nificant challenges related to computational power and energy
constraints, complicating efforts to maintain the confidentiality
and integrity of sensitive data. Previous methods have utilized
compartmentalization techniques to protect this sensitive data,
yet they remain vulnerable to breaches by strong adversaries
exploiting privileged software.

In this paper, we introduce TZ-DATASHIELD, a novel LLVM
compiler tool that enhances ARM TrustZone with sensitive
data flow (SDF) compartmentalization, offering robust protection
against strong adversaries in MCU-based systems. We address
three primary challenges: the limitations of existing compartment
units, inadequate isolation within the Trusted Execution Environ-
ment (TEE), and the exposure of shared data to potential attacks.
TZ-DATASHIELD addresses these challenges by implementing
a fine-grained compartmentalization approach that focuses on
sensitive data flow, ensuring data confidentiality and integrity,
and developing a novel intra-TEE isolation mechanism that
validates compartment access to TEE resources at runtime. Our
prototype enables firmware developers to annotate source code
to generate TrustZone-ready firmware images automatically. Our
evaluation using real-world MCU applications demonstrates that
TZ-DATASHIELD achieves up to 80.8% compartment memory
and 88.6% ROP gadget reductions within the TEE address space.
It incurs an average runtime overhead of 14.7% with CFI and
DFI enforcement, and 7.6% without these measures.

I. INTRODUCTION

The emergence of the Internet of Things and cyber-physical
systems has significantly increased our reliance on embedded
systems across critical domains such as healthcare, industrial
automation, and unmanned vehicles. Many of these devices
utilize microcontroller units (MCUs) for their low cost, com-
pact size, and energy efficiency. However, these constraints of-
ten lead firmware developers to sacrifice security. For instance,
to reduce costs and avoid the runtime overhead associated with
memory isolation, many MCU-based systems operate with a
shared address space. This allows any component within the

system to directly access all computing resources, including
code, data, and peripherals, as they are mapped into the shared
address space without any security mechanisms in place.

This practice poses significant risks, particularly when there
is a need to protect the confidentiality and integrity of data, as
many MCU-based systems store sensitive information in the
shared address space. For instance, a PIN stored in a door lock
system or GPS coordinates in an unmanned vehicle system
requires protection from malicious eavesdropping and manip-
ulation attacks [1], [2], [3], [4], [5], [6], [7], [8]. Adversaries
may reveal or tamper with other memory regions containing
full or partial information on sensitive data (e.g., a variable that
holds a GPS coordinate) and exploit any code that accesses
those memory regions.

Existing works have proposed various compartmentalization
techniques to minimize the attack surface within the shared
address space of MCU-based systems [9], [10], [11], [12].
These techniques divide firmware into multiple compartments
with varying levels of granularity, such as threads [9], [10],
[11], software components [10], [11] (e.g., kernel, device
drivers), and functions [12]. A security monitor then isolates
memory accesses at runtime using the Memory Protection
Unit (MPU) [9], [10], [12] or language-based code instru-
mentation [11], ensuring each compartment can only access
resources within its protection domain.

Unfortunately, the limited number of protection domains
(typically eight) presents a challenge, as many MCU applica-
tions require more than eight regions to isolate each compart-
ment. Previous works [12], [9], [10], [11] have attempted to
mitigate this limitation by merging multiple compartments into
one. However, this approach increases the size and complexity
of the isolated memory region, thereby creating new attack
surfaces. To improve the security of each compartment, it is
crucial to isolate them individually with adequate granularity.

Additionally, although these compartmentalization tech-
niques reduce the likelihood of malicious access to sensitive
data, they operate under the assumption that privileged soft-
ware (e.g., the RTOS kernel) within the Trusted Computing
Base (TCB) remains secure. However, with the increasing
complexity and number of vulnerabilities in embedded OSes
(e.g., CVE-2021-43997 in FreeRTOS), the barrier to compro-
mising the kernel has been significantly lowered [13], [14],
[15], [16].
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In this paper, we leverage both ARM TrustZone and
compartmentalization to protect sensitive data in MCU-based
systems against strong adversaries operating in privileged
mode. Specifically, our data flow analysis traces all data flows
related to the sensitive data to be protected. Using TrustZone, a
system can allocate sensitive resources to a trusted execution
environment (TEE), known as the secure world, and isolate
them from any component running in the untrusted execution
environment, known as the normal world, regardless of the
privilege mode of the component in the normal world. This
isolation ensures that the security monitor is protected from
such attacks. However, simply adopting TrustZone introduces
new challenges that must be addressed to build an effective
data protection mechanism for MCU-based systems:
Challenge 1: Compartment Granularity. Existing compart-
mentalization techniques are either too coarse-grained (e.g.,
thread), resulting in a wider attack surface, or unnecessarily
fine-grained (e.g., function), leading to high compartment
switch overhead. We propose a compartmentalization tech-
nique based on sensitive data flow (SDF), specifically designed
to protect data confidentiality and integrity in MCU-based
systems. This compartment unit reduces the attack surface by
including only the minimal computing base necessary.
Challenge 2: Lack of Intra-TEE Isolation. Using Trust-
Zone, the memory regions that contain sensitive data and the
code that accesses them can be allocated to the secure world,
isolating them from potential adversaries in the normal world.
Still, it does not provide any isolation within the secure world
itself. Without intra-TEE isolation, adversaries could com-
promise vulnerable code running in the secure world, access
sensitive data, and potentially cause a full system compromise.
To address this, we leverage software fault isolation (SFI)
to isolate unverified computations within each compartment,
thereby mitigating this problem. We opt for a software solution
to avoid the MPU’s hardware limitations on the number, size,
and alignment of protected regions.
Challenge 3: Shared and External Resources. Similar to
existing compartmentalization techniques, our SDF compart-
ments may share data with other compartments (e.g., a global
variable) or legitimately access peripherals in the secure-world
address space. Adversaries may exploit this to illegally access
another compartment’s sensitive data from a compromised
compartment or maliciously control a peripheral allocated to
the compartment. To address this, we develop a lightweight
mechanism to enforce Control Flow Integrity (CFI) and Data
Flow Integrity (DFI), ensuring that these shared resources are
accessed only through verified control and data flows.

In light of these challenges, we developed a new LLVM
compiler tool, TZ-DATASHIELD, which firmware developers
can easily use to compartmentalize an MCU-based system
and protect sensitive data by leveraging TrustZone. With the
C/C++ preprocessors provided by TZ-DATASHIELD, develop-
ers can annotate the source code to mark each sensitive data
item (e.g., global, stack, heap variable, and peripheral-mapped
region) with a macro indicating read, write, or read+write per-
missions. During compilation, the firmware is automatically

compartmentalized to produce (1) the secure-world firmware,
(2) one or more SDF compartments, which contain a piece
of code and necessary metadata, and (3) the normal-world
firmware. The secure world firmware contains a trusted secu-
rity monitor that securely loads each compartment from the
normal world into the secure world. The SDF compartments
are identified using forward and backward program slicing,
with the sensitive data serving as the source and sink, re-
spectively. Consequently, each compartment contains only the
code and data necessary for accessing a specific piece of
sensitive data. The normal-world firmware contains the rest
of the system that does not need to access any sensitive data.

To enforce intra-TEE isolation, TZ-DATASHIELD instru-
ments every branch and memory access instruction within each
compartment, confining potential vulnerabilities and attacks
to that compartment. This prevents illegal access from one
compartment to other resources in the secure world, including
those of other compartments and the security monitor. Fur-
thermore, since a compartment may legitimately share data
with another compartment or access external secure-world
resources outside, which SFI should not restrict, we developed
a lightweight CFI/DFI mechanism. This mechanism ensures
that access to these resources is only permitted after successful
verification of the control and data flow.

We implemented a prototype of TZ-DATASHIELD and
evaluated it on the LPCXpresso55S69 [17] development
board with an ARMv8-M-based MCU. In our security eval-
uation with various bare-metal and RTOS firmware, TZ-
DATASHIELD achieved up to 80.8% compartment memory
and 88.6% ROP gadget reductions in the secure-world address
space while protecting various sensitive data. Our evaluation
also demonstrated that TZ-DATASHIELD can eliminate differ-
ent types of attacks in the RTOS and effectively block attacks
from a strong adversary targeting sensitive data in the secure
world. The average runtime overhead of TZ-DATASHIELD
is 14.7% with both CFI and DFI enabled and 7.6% without
them, demonstrating a 36.7% speedup compared to function-
based compartmentalization. TZ-DATASHIELD requires less
than 45 KB of flash memory and 7 KB of RAM to provide
this protection, which is comparable to the overhead of coarse-
grained compartmentalization (component and thread) and 30

In summary, the contributions of this paper are as follows:
• We propose TZ-DATASHIELD, a novel LLVM compiler

tool that automatically compartmentalizes MCU firmware
based on sensitive data flow. The compartments are
executed in the secure world and protected by TrustZone,
ensuring the confidentiality and integrity of sensitive data
against strong adversaries in the normal world.

• We design a data-flow-based compartmentalization tech-
nique called SDF compartmentalization, which achieves
sensitive data flow protection and intra-TEE isolation.
It also enables the protection of shared and peripheral
data. Additionally, TZ-DATASHIELD reduces the attack
surface and TCB size of the secure world firmware.

• We implement and open-source a prototype of TZ-
DATASHIELD [18] with an easy-to-use annotation sys-

2



tem for marking sensitive data to be protected. TZ-
DATASHIELD produces TrustZone-ready firmware im-
ages that securely execute SDF compartments in isolation
from potential attacks in the normal world.

• We evaluate our prototype on various bare-metal and
RTOS firmware and conduct comprehensive security and
performance evaluations. Our results demonstrate that
TZ-DATASHIELD can protect sensitive data from strong
adversaries exploiting vulnerabilities in the compart-
ments, achieving up to 80.8% reduction in the secure-
world memory compared with other compartmentaliza-
tion techniques.

II. BACKGROUND OF ARMV8-M TRUSTZONE

Privilege Modes and ARM TrustZone. ARM processors
for MCUs support two privilege modes to control access
to system resources: privileged and unprivileged modes. The
privileged mode is typically reserved for system software, such
as the RTOS kernel, and the processor prevents software in
the unprivileged mode from directly accessing the privileged
mode software. Many security mechanisms for MCUs rely
on the privileged mode to protect their security monitor from
malicious attacks [9], [10], [12], [19], [20], [11]. However,
there have been advanced attacks on MCU-based systems,
capable of compromising software in the privileged mode, e.g.,
by exploiting a vulnerability in an RTOS [16], [13], [14], [15].
Such attacks can disable existing security mechanisms that rely
on the privileged mode and lead to a full system compromise.

To counteract such strong adversaries, the ARMv8-M archi-
tecture introduces TrustZone for MCUs. TrustZone segregates
the processor into two distinct environments, called the secure
world and the normal world, facilitating strong and hardware-
based isolation between the two. The secure world provides
a TEE where sensitive computing resources can be allocated,
while the normal world is for general RTOS and applications,
which are assumed to be potentially compromised. The hard-
ware ensures that any software running in the normal world
is isolated from the secure world, regardless of the privilege
modes. As such, even privileged software in the normal world
(e.g., compromised or malicious RTOS) cannot access any
resource in the secure world.
Security Attribution Unit (SAU). The security of resources
in ARMv8-M TrustZone is controlled by a hardware compo-
nent, the SAU. Similar to an MPU, the entire address space
can be partitioned into a specified number of memory regions,
called the SAU regions. Each SAU region is configured with
a security attribute, e.g., to allocate it to the secure world
or the normal world. This mechanism extends to allocating
peripherals to the secure or normal world as peripherals are
also mapped to the address space, similar to the flash memory
and SRAM. Notably, the SAU allows dynamic updates to
region configurations and their access policies. It allows TZ-
DATASHIELD to reallocate compartments between the secure
world and the normal world at runtime, keeping unnecessary
compartments outside the secure world.

1 /* Data from key_stored is confidential */
2 const uint8_t key_stored[SIZE] = {0x1234567890abcdef};
3 uint8_t key_received[SIZE] = {0};
4 int main(void) {
5 // Peripheral initialization ...
6 for (;;) {
7 sleep(interval);
8 check();
9 }
10 }
11 void check(void) {
12 if (match(key_stored, key_received))
13 unlock_and_lock();
14 }
15 bool match(uint8_t *s1, uint8_t *s2) {
16 for (uint32_t i = 0; i < SIZE; i++)
17 if (s1[i] != s2[i]) return false;
18 return true;
19 }
20 void unlock_and_lock(void) {
21 PinWrite(LOCK_PORT, LOCK_PIN, 1);
22 PinWrite(LOCK_PORT, LOCK_PIN, 0);
23 }
24 void irq_handler(void) {
25 /* Data from USART must not be manipulated */
26 usart_data msg = DEVICE_READ(USART);
27 switch(msg.type) {
28 case KEY_CHAR:
29 key_received[rx_index] = msg.data;
30 // Other cases ...
31 }
32 }

Listing 1: A code snippet of a smart door lock system,
PinLock. The code is simplified for readability.
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const uint8_t key_stored[SIZE] = {0x..};
uint8_t key_received[SIZE] = {0};

int main(void) {
  /* Peripheral initialization ... */
  for (;;) {
    sleep(interval);
    check();
  }
}

void check(void) {
if (match(key_stored, key_received))

    unlock_and_lock();
}

uint8_t match(uint8_t *s1, uint8_t *s2) {
  /* returns 1 when s1 and s2 match */
  for (uint32_t i=0; i<SIZE; i++)
     if (s1[i] != s2[i])  return 0;
  return 1;
}

void unlock_and_lock(void) {
  PinWrite(GPIO, LOCK_PORT, LOCK_PIN, 1);
  PinWrite(GPIO, LOCK_PORT, LOCK_PIN, 0);  
}

void irqHandler(void) {
  usart_msg msg = DEVREAD(usart0_addr); 
  … 
  key_received[i] = msg.data;
  …
}

No leakageX

args={s1,s2}

ret(uint8_t)

Shared data 
(args and ret)

(a) Inadequate compartment granularity.
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const uint8_t key_stored[SIZE] = {0x..};
uint8_t key_received[SIZE] = {0};

int main(void) {
  /* Peripheral initialization ... */
  for (;;) {
    sleep(interval);
    check();
  }
}

void check(void) {
if (match(key_stored, key_received))

    unlock_and_lock();
}

uint8_t match(uint8_t *s1, uint8_t *s2) {
  /* returns 1 when s1 and s2 match */
  for (uint32_t i=0; i<SIZE; i++)
     if (s1[i] != s2[i])  return 0;
  return 1;
}

void unlock_and_lock(void) {
  PinWrite(GPIO, LOCK_PORT, LOCK_PIN, 1);
  PinWrite(GPIO, LOCK_PORT, LOCK_PIN, 0);  
}

void irqHandler(void) {
  usart_msg msg = DEVREAD(usart0_addr); 
  … 
  key_received[i] = msg.data;
  …
}

No leakageX

args={s1,s2}

ret(uint8_t)

Shared data 
(args and ret)

(b) Lack of intra-TEE isolation.
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void check(void) {
  if (match(…, key_received))
    …
}

void irqHandler(void) {
  …

      key_received[i] = … ;
  …

Data 
propagation

Disabled unlock Challenge3

USART0

key_stored
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const uint8_t key_stored[SIZE] = {0x..};
uint8_t key_received[SIZE] = {0};

int main(void) {
  /* Peripheral initialization ... */
  for (;;) {
    sleep(interval);
    check();
  }
}

void check(void) {
if (match(key_stored, key_received))

    unlock_and_lock();
}

uint8_t match(uint8_t *s1, uint8_t *s2) {
  /* returns 1 when s1 and s2 match */
  for (uint32_t i=0; i<SIZE; i++)
     if (s1[i] != s2[i])  return 0;
  return 1;
}

void unlock_and_lock(void) {
  PinWrite(GPIO, LOCK_PORT, LOCK_PIN, 1);
  PinWrite(GPIO, LOCK_PORT, LOCK_PIN, 0);  
}

void irqHandler(void) {
  usart_msg msg = DEVREAD(usart0_addr); 
  … 
  key_received[i] = msg.data;
  …
}

No leakageX

(c) Compromised shared data.

Figure 1: Challenges in protecting sensitive data of PinLock.
The individual data flows of key_received and key_stored
must be isolated considering various attack surfaces.

III. MOTIVATING CHALLENGES

In this section, we outline three key challenges that we
have identified while protecting sensitive data in MCU-based
systems. Listing 1 shows a code snippet of the PinLock system
as an example. An interrupt handler irqHandler() receives a
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PIN entered by the user from a keypad by reading a peripheral-
mapped region at a certain address USART and storing it in
key_received (lines 29-38). If the received PIN corresponds
with the stored key in key_stored (lines 13-22), the door
unlocks by writing to the lock peripheral (lines 24-27). This
authentication method works only when the data flows of the
sensitive data in key_stored remains confidential and the other
data from the keypad at USART has not been tampered with.
Figure 1 illustrates the challenges that TZ-DATASHIELD aims
to address to protect the confidentiality and integrity of these
sensitive data.
SDF Compartmentalization. Table I presents different com-
partmentalization techniques for MCU firmware in compari-
son. Although various compartmentalization approaches have
been proposed for MCUs [9], [10], [12], [11], the compartment
units (i.e., granularities) of these approaches are not suitable
for protecting sensitive data flow. In particular, Minion [9],
EC [10], and CRT-C [11] employ coarse-grained compartment
units such as threads, components (e.g., libraries or RTOS
kernel), and devices. While ACES [12] provides fine-grained
compartmentalization of distinct functions. These compart-
ment units, however, fall short in defending against attacks
that exploit code vulnerabilities to breach confidentiality and
integrity. This is because a single sensitive data flow might
influence others within the same compartment.

As shown in Figure 1(a), although coarse-grained compart-
mentalization restricts access to resources for each thread,
component, or device, it may include more resources than
necessary in the compartment to handle a single piece of
sensitive data in the compartment, resulting in the potential
leakage of other sensitive data. For example, a thread-based
compartment will include the data flows of both key_stored
and USART in one compartment because they belong to the
same thread in the system, and an attack that compromises the
execution of key_stored will also be able to leak the received
PIN from the keypad at USART.

On the other hand, fine-grained compartmentalization re-
duces the attack surface by dividing the resources into more
small compartments (e.g., one compartment per function).
However, it suffers from a high runtime overhead caused
by more frequent switching between the compartments (e.g.,
function calls). In addition, it forces multiple compartments
to have more shared data than coarse-grained compartments
across the compartment boundaries, which attackers may tar-
get, resulting in a limited attack surface reduction, such as
function argument and return data. Yet, this approach may
incur significant overhead due to the necessity for frequent
compartment switching from function calls and returns as
illustrated in Figure 1(a).

To address this problem, our approach focuses on com-
partmentalizing distinct sensitive data flows to protect the
confidentiality and integrity of sensitive data. By grouping all
relevant functions into one compartment, SDF compartmental-
ization solution not only offers the expected isolation but elim-
inates unnecessary compartment switching, thereby addressing
the limitations in the previous compartmentalization efforts. In

the PinLock example, our approach makes one compartment
for the read accesses to key_stored to ensure its confidentiality
and the other for the write access to key_received to its
integrity. Functions such as unlock_and_lock(), check(), and
match() would belong to one compartment (say, Compart-
ment 1) for key_stored. Meanwhile, for the integrity of
key_received, the function irqHandler() would constitute
another compartment (say, Compartment 2).
Intra-TEE Isolation for TrustZone. Prior compartmen-
talization approaches are based on a weak attack model
assuming that the adversary cannot compromise the privileged
software. Under this attack model, their compartment isolation
mechanisms run in the same privilege mode with other priv-
ileged software (e.g., RTOS kernel) and leverage an MPU or
memory access checks inserted by a memory-safe language
to enforce compartment boundaries at runtime. However, a
strong adversary taking control of the privileged software (e.g.,
by exploiting its vulnerabilities such as CVE-2021-43997) can
bypass these mechanisms (§II). Hence, our strategy involves
segregating all compartments reliant on sensitive data into the
secure world, with other computations occurring in the normal
world using TrustZone.

Unfortunately, TrustZone does not provide an isolation
mechanism within the secure world [15], [14], [21]. Con-
sequently, all programs within the secure world are trusted,
including unverified code in compartments with potential vul-
nerabilities, allowing them access to any resources allocated to
the secure world. This weakness could enable an adversary to
exploit a vulnerability within a compartment, thereby gaining
unlimited access to sensitive data across compartments in the
absence of intra-TEE isolation measures. For instance, com-
promised code within irqHandler() could potentially retrieve
and leak key_stored (Figure 1(b)).

To mitigate such threats, our approach leverages SFI to
ensure that operations, like reading key_stored in Compart-
ment 1, are not abused to access other secure-world data
(e.g., the keypad at USART) or code exclusively assigned to
Compartment 2. Although the MPU can be used to design an
intra-TEE isolation mechanism for TrustZone, we avoid using
it due to its inherent limitations [13]: (1) limited number of
protected memory regions (typically eight) (2) constraints on
memory region size and alignment. For the second reason, a
compartment usually consumes at least two regions – one for
data and another for code – as they are not contiguous in mem-
ory space. This further exacerbates the limitation regarding the
number of memory regions. Previous works [12], [9], [10],
[11] have circumvented this limitation by merging multiple
compartments into one. However, this approach increases the
size of the isolated memory region, thereby creating new
attack surfaces. Therefore, to ensure the security of each
compartment, it is necessary to isolate them individually with
adequate granularity.

Although there exists research to develop intra-TEE iso-
lation techniques for ARM TrustZone, their design depends
on special hardware features that are not available on ARM
MCUs and focuses on isolating certain software components

4



Table I: Comparison of different compartmentalization techniques for MCU-based systems.

Project
Compartment Compartment Compartment Attack Shared Data

# Compartments
Target

Units Isolation Switch Model Protection Firmware
Minion [9] Thread MPU + SVC Infrequent Weak† None Limited RTOS

EC [10] Thread, Component, Device MPU + DWT Infrequent Weak† Type Extensions Limited Bare-metal, RTOS
ACES [12] Function(s) MPU + SVC Frequent Weak† Dynamic Profiling Limited Bare-metal
CRT-C [11] Thread, Component Language-based Isolation Infrequent Weak† Object Sharing No Limits RTOS

TZ-DATASHIELD Sensitive Data Flow TrustZone + Intra-TEE Isolation Moderate Strong CFI + DFI No Limits Bare-metal, RTOS
† An attacker who compromises software in the privileged execution mode (e.g., RTOS) can bypass the protection.

Source code Program slicing
on sensitive data

Compartment 
Identification (§V.B)Code Annotation (§V.A)

Offline

Application

Normal World Secure World

Compart-
ment 1

RTOS

Compart-
ment 2

Security Monitor (§V.D)

Shared Data (§V.E)

Intra-TEE Isolation (§V.C)

Runtime

Developer

- Secure-world firmware
- Compartment(s)
- Normal-world firmware

Figure 2: Overview of TZ-DATASHIELD.

Table II: Comparison of different intra-TEE isolation tech-
niques for ARM TrustZone.

Project Architecture Enabling Features Isolation Target
PrOS [15] ARMv7/8-A Virtualization Trusted OS

ReZone [14] ARMv7/8-A Hardware-assisted Isolation Trusted OS
RT-TEE [21] ARMv8-A/M Driver Debloating + SFI Device Drivers

TZ-DATASHIELD ARMv8-M SFI + CFI + DFI Sensitive Data Flow

only. As shown in Table II, solutions like PrOS [15] and
ReZone [14] are designed for the ARMv7-A and ARMv8-A
architectures, leveraging platform partition controllers (PPCs)
such as a secure memory management unit (sMMU) and a
resource domain controller (RDC), which are absent in the
ARMv8-M architecture used in MCUs. Unlike our approach to
isolating the data flows of sensitive data, RT-TEE [21] isolates
unverified device drivers within the secure world, similar to
component-based compartmentalization [10], [11].
Secure Access to Shared and External Resources. Similar
to other compartmentalization techniques, an SDF compart-
ment may have to share data with another compartment to
handle sensitive data inevitably. For instance, in PinLock,
both match() in Compartment 1 and irq_handler() in Com-
partment 2 need to access key_received as a shared data
(Figure 1(c)). Such shared data can be targeted by an attack
that compromises one compartment, say Compartment 2, and
manipulates the shared data to affect the execution of the other
compartment which relies on the shared data, e.g., corrupting
key_received to prevent Compartment 1 from unlocking the
door even when the correct PIN is entered.

An intra-TEE isolation technique does not prevent such an
attack because such shared data is not subject to isolation and
should be accessible from the corresponding compartments

for legitimate computation. Similarly, peripherals’ location
cannot be adjacent to the compartments in the address space,
such as a peripheral-mapped memory region (e.g., GPIO for
Compartment 1 and USART for Compartment 2) may be ma-
liciously accessed or manipulated by an attacker despite the
intra-TEE isolation in place. To mitigate this risk, which prior
compartmentalization work [9], [10], [12], [11], [21] does not
fully solve, we develop a lightweight mechanism to validate
the control and data flow integrity (CFI and DFI) of the
compartment execution whenever shared or peripheral data
is accessed, preventing advanced attacks from accessing the
data, using return-oriented programming (ROP) [22], [23] and
data-only attacks [24], [25] for example.

IV. THREAT MODEL

TZ-DATASHIELD aims to protect the confidentiality and
integrity of sensitive data in MCU firmware against a strong
adversary capable of compromising any software in the normal
world, including privileged software such as an interrupt han-
dler in bare-metal firmware or exploiting a control hijacking
vulnerability in an RTOS. The adversary’s objective is to either
steal or tamper with sensitive data via malicious memory
or peripheral accesses, targeting full or partial information
of the data in the data flow. Even though TZ-DATASHIELD
relocates all computations dependent on sensitive data to the
secure world, vulnerabilities in these computations can still be
exploited due to the lack of internal isolation within the secure
world. Such vulnerabilities could serve as a single point of fail-
ure, jeopardizing the entire system since ARM TrustZone does
not provide an internal isolation mechanism within the TEE,
allowing any secure-world program to access any resources in
the secure world and normal world. Additionally, the adversary
may target shared or peripheral data, which are legitimately
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accessible by compartments, to circumvent the compartment
isolation mechanism in the secure world.

TZ-DATASHIELD relies on ARM TrustZone and its secu-
rity features, including secure booting. Additionally, we trust
the correctness of TZ-DATASHIELD’s software modules and
assume they are not vulnerable, including the compiler tool
and the security monitor (detailed in §V). The integrity of the
security monitor can be verified using the TrustZone secure
booting feature. We assume that the firmware source code is
accessible. We further assume information flow (CFI and DFI)
is an effective mechanism in distinguishing legitimate access
from malicious access to shared data (additional discussion
in §IX). Our design does not require hardware support for
privileged and unprivileged mode separation and memory
isolation units (e.g., MPU and PPC) in the secure world.

We do not consider physical attacks, including snooping
or manipulating the hardware resources. By relying on the
trust model of TrustZone, we do not address the security
vulnerabilities inherent to TrustZone hardware, such as side-
channel vulnerabilities [26], [27]. Denial-of-service attacks
aimed at compromising the availability are out-of-scope.

V. DESIGN

Figure 2 presents an overview of our design. We first
describe the offline processes: the firmware code annotation
process, where developers annotate the source code to identify
sensitive data (§V-A), and the compartment identification pro-
cess (§V-B), in which our compiler tool statically analyzes the
annotated code to find the distinct data flows of the sensitive
data. We then explain our runtime mechanisms for intra-TEE
isolation (§V-C) and the security monitor to enforce isolation
policies within the secure world (§V-D), designed to prevent
leakage and unauthorized access between compartments and
bypassing the security monitor. Lastly, we detail our strategies
used to prevent malicious access to shared data across different
compartments and peripheral data (§V-E).

A. Firmware Code Annotation

Manually developing a trusted application to protect data
paths is time-consuming and error-prone. This process neces-
sitates that developers have a comprehensive understanding
of all data flows across functions and software layers, in-
cluding third-party libraries. To mitigate this challenge, TZ-
DATASHIELD provides a set of easy-to-use C/C++ prepro-
cessors that enable firmware developers to annotate source
code efficiently. Using the preprocessors, the developers only
need to annotate the data variables or addresses in the source
code where the sensitive data are initialized or allocated.
TZ-DATASHIELD automatically identifies and isolates the
sensitive data flows across all execution paths to and from
the annotated variables/addresses, alleviating the need for the
developer to annotate every related variable across functions
and software layers. Developers can enforce three types of se-
curity policies on sensitive data: (1) confidentiality protection
using TZDS_*_R, (2) integrity protection using TZDS_*_W, and
(3) confidentiality and integrity protection using TZDS_*_RW,

/* Global data, confidentiality protection */
const uint8_t key_stored[KEY_SIZE] TZDS_DATA_R = {0x...};
void func() {

/* Stack data, integrity protection */
uint8_t buffer[BUFFER_SIZE] TZDS_DATA_W = {0x0};
...

}
/* Heap data, confidentiality and integrity protection */
static void *m_head TZDS_HEAP_RW = malloc(...);
/* Peripheral data at [GPIO_BASE,GPIO_BASE+0x1000),

integrity protection */
#define GPIO_BASE (0x4008C000u)
TZDS_MMIO_W(GPIO_BASE, 0x1000)
GPIO_Type *gpio = (GPIO_Type *) GPIO_BASE;

Listing 2: An example code snippet to show code annotation
using TZ-DATASHIELD for sensitive data protection.

where * can be replaced with DATA, HEAP, or MMIO. TZ-
DATASHIELD supports the protection of global and stack data
(DATA), heap data (HEAP), and peripheral data (MMIO).

Listing 2 shows how to annotate sensitive data using TZ-
DATASHIELD. In this example, the confidentiality of global
data in key_stored with TZDS_DATA_R and the integrity of
stack data in buffer with TZDS_DATA_W will be protected from
unrelated code in the normal world and secure world. In
addition, the heap data pointed to by m_head are annotated with
TZDS_HEAP_RW, thus confidentiality and integrity are protected.
For each pointer variable annotated with a TZDS_HEAP prepro-
cessor, TZ-DATASHIELD traces the heap memory allocation
and free of the data pointed by the pointer and isolates its data
flow from other code. Lastly, the integrity of peripheral regis-
ters mapped at [0x4008C000, 0x4008D000] will be protected
via the TZDS_MMIO_W(base, size) annotation. Unlike other
preprocessors, the developers need to explicitly specify the
base and size of the region to be protected since the memory
range may not be statically identifiable in some firmware (e.g.,
a computed range by arithmetic operators).

B. Compartment Identification

Given the annotated source code of the firmware, TZ-
DATASHIELD performs data flow analysis on the LLVM IR
code to identify compartments. It first generates a Value Flow
Graph (VFG), which statically represents both the control
and data dependence of a program. It serves as the input for
our compartment identification algorithm, the pseudo-code of
which is presented in Algorithm 1. The output of the algorithm
is compartment identification information which is essential
for the compiler to generate images for the compartments,
secure-world firmware, and normal-world firmware.
Sensitive Data Flow. For each sensitive data requiring
confidentiality protection (i.e., annotated using a TZDS_*_R
or TZDS_*_RW), TZ-DATASHIELD conducts forward slicing
(line 10) based on data flow analysis [28] to identify in-
structions that directly reads the data and data objects that
are potentially influenced by the data (line 4). In addition, it
conducts a context-sensitive point-to analysis [28] to find in-
structions that indirectly read the data through aliased pointers.
Similarly, for each sensitive data requiring integrity protection
(i.e., annotated using a TZDS_*_W or TZDS_*_RW preprocessor),

6



Algorithm 1: Sensitive Data Flow Compartment Identification.
Input : Value flow graph (VFG) - V FG.
Input : A set of sensitive data to protect - Sn.
Output: A set of SDF compartments – Cn.

1 Cn ← ∅
2 V _Dn ← ∅
3 foreach V ∈ V FG do
4 if V.address ∈ Sn then
5 V Dn.add(V )
6 end
7 end
8 foreach V ∈ V Dn do
9 if TZDS_R ∈ V.mark then

10 SFn.add(getForwardSlices(V ))
11 end
12 if TZDS_W ∈ V.mark then
13 SBn.add(getBackwardSlices(V ))
14 end
15 end
16 foreach slice ∈ SFn ∪ SBn do
17 Fnslice ← group nodes in slice by function
18 foreach Fn ∈ Fnslice do
19 Fn.sensitive_data.add(slice.sensitive_data)
20 end
21 end
22 foreach S ∈ Sn do
23 C ← ∅
24 foreach Fn ∈ all functions do
25 if Fn.sensitive_data.size() = 1 and

S ∈ Fn.sensitive_data then
26 C.add(Fn)
27 end
28 end
29 Cn.add(C)
30 end
31 foreach Fn ∈ all functions do
32 if Fn.sensitive_data.size() > 1 then
33 Cn.add(C)
34 end
35 end
36 return Cn

the compiler tool conducts backward slicing (line 13) to find
instructions and data objects that can potentially influence the
sensitive data, either directly or indirectly.

As a result of this analysis, each SDF compartment is
assigned a minimal set of code, data, and peripheral-mapped
memory regions which encompasses a distinct data flow of
the sensitive data. More specifically, an SDF compartment
only contains the result of forward slicing on one sensitive
data as the source for confidentiality protection, or the result
of backward slicing on one sensitive data as the sink for
integrity protection. If both the confidentiality and integrity
need protection (annotated using a TZDS_*_RW preprocessor),
TZ-DATASHIELD performs a union of the forward and back-
ward slicing results to generate a compartment for reading and
writing the sensitive data. Overall, this compartment granular-
ity based on sensitive data flow ensures that only minimal
computing resources will be assigned to each compartment,
reducing both the attack surface and the frequency of the
compartment switching compared to existing compartment
units, as experimentally demonstrated in §VII.
Shared Code and Data. Since different compartments may
need to execute common code (e.g., a library or RTOS

function) and communicate through shared data (e.g., global
variables), TZ-DATASHIELD compares the data dependency
of every compartment and identifies the shared code and data
across them. Each of these shared code and data objects is then
relocated into a separate ELF section, and these compartments
are instrumented to access them via the compartment isolation
boundary securely. At runtime, our intra-TEE isolation mech-
anism ensures that the shared code is isolated using SFI, while
access to the shared data and peripheral data is additionally
validated using CFI and DFI enforcement (§V-E).

Using the result of the above compartment identification
steps, TZ-DATASHIELD compiles the IR code and links the
binary objects to generate the images of the SDF compart-
ments, secure-world firmware, and normal-world firmware.
During this process, it creates three distinct sections for each
SDF compartment: code section, private data section, and
metadata section to contain the information of the shared code,
shared data, and peripheral data. These compartment sections
are added to the normal-world firmware image, so that they
are kept outside the secure world while not being executed,
minimizing the temporal attack surface. The secure-world
firmware includes the security monitor that contains auxiliary
routines to securely load the compartments from the normal
world to the secure world, and execute them. The normal-
world firmware includes the rest of the original firmware that
does not need access to the sensitive data.

C. Intra-TEE Compartment Isolation

We leverage software fault isolation (SFI) for intra-TEE
isolation, to avoid known hardware limitations of memory
isolation in MCUs (refer to §III). It consists of a compile-
time instrumentation module and runtime checks performed
by the security monitor. For each compartment, the com-
piler generates three distinct sections: code, private data, and
metadata sections. The code section is loaded into read-only
memory (e.g. flash memory), while the private data section
is loaded into read-write memory (e.g. SRAM). Besides, the
metadata section specifies a list of the shared code, shared
data, and peripheral data for the compartment. Given LLVM
IR instructions, the instrumentation ensures that all instructions
for data access target the appropriate address ranges of the
private data section, shared, or peripheral data referring to the
metadata, and all control-flow transfer instructions target a list
of function entry addresses in the code section.

Since our trusted compiler ensures that all direct data
accesses and control transfers are correct, only indirect data
accesses and control transfers need to be instrumented. This
guarantees that each compartment operates within its desig-
nated areas, preventing unauthorized instructions and main-
taining isolation within the secure world. Figure 3(a) illustrates
how TZ-DATASHIELD instruments indirect control transfers
(in Compartment 1) and data accesses (in Compartment 2).
TZ-DATASHIELD identifies all instructions for indirect control
transfers (e.g. call and invoke) and inserts a checking routine
before them. During runtime, this routine verifies whether the
transfer target address is within the compartment’s address
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Compartment
  ; indirect control transfer
  ; before instrumentation
  %result = call i32 %fp(i32 %x)

; after instrumentation
  %fpi = ptrtoint i32 (i32)* %fp to i32
  %ok = call i1 @check(%fpi, …)
  br i1 %ok, label %call, label %trap
call:

%result = call i32 %fp(i32 %x)
br label %continue

trap:
  call void @error_handler(…)
continue:

; continue with the rest of program

  ; indirect memory/peripheral access
  ; before instrumentation
  store i32 %data, i32* %addr

; after instrumentation
  %ok = call i1 @check(%addr, …)
  br i1 %ok, label %store, label %error
store:
  store i32 %data, i32* %addr
  br label %continue
trap:
  call void @error_handler(…)
continue:

; continue with the rest of program

Security Monitor

Compartment Config
Compartment 1

:compartment addrs
:shared data addrs
:peripheral addrs

Compartment 2

:compartment addrs
:shared data addrs
:peripheral addrs

1 2

4

4

  store i32 %data, i32* %addr

  %result = call i32 %fp(i32 %x) 3

3

(a) SFI enforcement.

Compartment
 ; store value with DFI enforcement
 ; before instrumentation
 store i32 %value, i32* %addr
 ; after instrumentation
 %addri = ptrtoint i32* %addr to i32
; update the RDT with store_id
call i1 @update_rdt(%addri, %store_id)

 store i32 %value, i32* %addr

 ; load value with DFI enforcement
 ; before instrumentation
%value = load i32, i32* %addr

 ; after instrumentation
 %addri = ptrtoint i32* %addr to i32
; get the latest store_id from RDT

 %store_id = call i32 @get_rdt(%addri)
 call i1 @check_store(%store_id,���)
valid:
%value = load i32, i32* %addr

invalid:
call void @error_handler(…)

Compartment Config
Compartment

: function addr
: allowed source   
  store id2

RDT1

4

Shadow Stack

 %value = load i32, i32* %addr

Security Monitor

3

 store i32 %value, i32* %addr

(b) CFI and DFI enforcement.

Figure 3: LLVM IR instrumentation for (a) SFI enforcement
on an indirect control transfer and memory access, and (b)
CFI and DFI enforcement on shared data accesses.

range. Similarly, TZ-DATASHIELD inserts a checking routine
of the security monitor for all instructions involving indirect
data accesses (e.g., load and store). The security monitor
ensures that the access target is either within the private data
section or the allowed data list.

In TZ-DATASHIELD, every compartment and security mon-
itor operates in the privileged mode within the secure world.
This arrangement prevents frequent context switches between
the security monitor and the compartments via SVC, thereby
improving performance. Note that SFI also shields the security
monitor from unauthorized access from compartments.

D. Security Monitor

The security monitor enforces the correctness of secure
booting, SAU configuration, and compartment execution.
Secure Boot. The secure reset interrupt handler is the entry
point of the secure world firmware. When an MCU is powered
on, the secure bootloader of TrustZone jumps to the secure
reset interrupt handler, which then verifies the integrity of
the security monitor. This prevents any strong attacker in the
normal world from tampering with the security monitor.

Security Attribution Unit (SAU). The SAU is configured
to allocate different memory regions. Each SAU region can
be configured as Secure (S), Non-Secure (NS), or Non-Secure
Callable (NSC). The S and NS regions are designated for the
secure and normal worlds respectively, while NSC regions
facilitate cross-world invocations with a special instruction
called Secure Gateway (SG). TZ-DATASHIELD uses three S
regions for its secure-world firmware: the security monitor
code, the running compartment, and the shared data and
the stack/heap memory. Within a compartment, its peripheral
region in the secure world is also configured as an S region.
The secure world firmware also assigns one NSC region
containing routines to load and execute compartments. Once
the initialization is completed, the control is handed over from
the secure world to the normal world.
Compartment Execution. The security monitor mediates
cross-world invocations. When a compartment is invoked, it
initializes the required RAM regions and then loads the cor-
responding compartment. Although TZ-DATASHIELD loads
compartments on-demand by default, developers have the
option to load all the compartments altogether at boot time
for efficiency. For security, TZ-DATASHIELD is integrated
with heap management in the security monitor to handle
heap memory usage of itself and compartments. For SFI,
CFI, and DFI, the security monitor has to maintain an up-
to-date list of dynamic memory allocations allowed for each
compartment; further details on CFI and DFI are provided
in §V-E. Specifically, the security monitor tracks all heap
allocations and free at runtime, associating each with its owner
compartment. Likewise, it updates the address range of stack
frames upon function calls and returns.

Additionally, compartment execution must be able to re-
spond to interrupts. Since interrupts are triggered by hardware,
the corresponding interrupt handler may not reside within
the currently active compartment. In such cases, the secu-
rity monitor should update the context of the newly active
compartment and mediate the compartment switch. To enforce
comprehensive security checks, TZ-DATASHIELD implements
a secure interrupt dispatcher for each interrupt handler in the
secure world, registering this dispatcher in the interrupt vector
table (IVT). When an interrupt occurs, the hardware triggers
the dispatcher, which then redirects control to the original
handler. The secure world IVT is immutable and stored in
read-only flash memory. All addresses within the IVT point
to a common dispatcher. This dispatcher forwards requests to
the security monitor, which in turn invokes the actual handler
within the isolated compartment.

E. Shared and Peripheral Data Protection

Although an individual SDF compartment may have its
private memory/peripheral data, multiple compartments may
need to share data. As discussed in §III, such shared and
peripheral data are subject to potential attacks that try to
access the data for stealing and manipulation since access to
these data should be allowed for the compartments to do their
legitimate job, thereby cannot be blocked by compartment
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isolation. We address this issue by validating the context in
which the shared and peripheral data is accessed. Specifically,
we enforce lightweight CFI and DFI on the execution path
that accesses the shared resource. In contrast, access to shared
code does not need additional validation since exploiting it
does not enable an attacker to compromise the confidentiality
or integrity of data in other compartments.
Lightweight CFI and DFI Enforcement. We develop a
lightweight mechanism to validate the CFI and DFI of the
compartment execution that attempts to access shared or
peripheral data. For any indirect data access or control transfer
instruction, our intra-TEE isolation mechanism first performs
an SFI check to confine the target within the memory ranges of
the compartment. TZ-DATASHIELD additionally performs CFI
and DFI checks if and only if the target is one of those shared
or peripheral data assigned to the compartment. Figure 3(b)
illustrates the CFI and DFI enforcement. Specifically, the CFI
enforcement ensures that prior indirect control transfer targets
that have been recorded are valid while the DFI enforcement
checks if prior indirect memory accesses were performed by
valid store and load instructions. A CFI check compares each
control transfer target with the valid targets statically identified
during the compartment identification including call and ret
instructions. To verify the target of a return instruction, our
security monitor maintains a shadow stack to keep track of
the return address at runtime (ret). For DFI enforcement, each
store instruction that writes to the shared or peripheral data
is assigned with a unique store_id, and each load instruction
is assigned with a list of allowed store_ids during the static
analysis. At runtime, the security monitor maintains a runtime
definitions table (RDT) that records the store_id of the last
store instruction that accesses shared or peripheral data, and
before each load, the security monitor checks if the store_id
is in the allowed store_id list.

The sizes of the shadow stack and RDT maintained by the
security monitor are configurable, allowing them to store the
last N targets of control transfers or data accesses for each
SDF compartment. When compartment access to shared or
peripheral data is detected, these N targets are validated using
the inter-procedural control graph (ICFG) and value flow graph
(VFG) constructed during the compartment identification, by
matching them with the valid targets found statically. Since our
CFI/DFI mechanism is only activated when there is shared or
peripheral data access, which is infrequent, only a minimal
overhead is incurred (see §VII-C1).

VI. IMPLEMENTATION

TZ-DATASHIELD is prototyped in approximately 1.2K lines
of C (security monitor), 1.7K lines of C++, and 2.8K lines of
Python code (static analysis). We developed TZ-DATASHIELD
using Clang/LLVM-14 and the SVF library [28] for the inter-
procedural value flow and points-to analyses. The C/C++
preprocessor for code annotation is implemented using macros
of __attribute__ provided in a header file. We implemented
LLVM passes that identify sensitive data flows, conduct pro-
gram slicing, and instrument LLVM IR code for SFI, CFI,

and DFI. Since the default linker in the LLVM toolchain
does not support ARM TrustZone, we use a GNU BFD
linker to generate the firmware images. The compartments are
generated as position-independent code (PIC), allowing them
to be loaded at any memory location. To dynamically generate
a linker script for each compartment, we use a Python script
to parse the compartmentalization results and specify their
memory layout.

VII. EVALUATION

In this section, we evaluate the security and performance
of TZ-DATASHIELD prototype using a set of real-world ap-
plications. First, we measured the security impacts of TZ-
DATASHIELD by quantifying the number of secure-world
address space and ROP gadgets reduction in the firmware.
Then, we analyzed how TZ-DATASHIELD can prevent at-
tackers from exploiting the vulnerabilities in a compartment
to steal or tamper with sensitive data. We finally measured
the performance overhead by comparing the runtime and
memory footprint of the applications with and without TZ-
DATASHIELD. Additionally, we conduct formal verification of
the TZ-DATASHIELD security monitor and evaluate the de-
veloper effort necessary for integrating TZ-DATASHIELD into
applications. Furthermore, we measure other performance-
related metrics, including the number of compartment switches
and SFI/CFI/DFI checks, as detailed in Appendix §A.
Experimental Setup. We evaluate security impacts and
performance overhead imposed on twelve real-world MCU
applications. The experiments were conducted on the LPCX-
presso55S69 [17] development board, featuring an LPC55S69
MCU with an ARM Cortex-M33 processor based on the
ARMv8-M architecture. This MCU operates at 150 MHz and
is equipped with 640 KB flash and 320 KB RAM.

Twelve applications are used in our evaluation – six ap-
plications with RTOS and six bare-metal ones without RTOS.
The applications running on RTOS exhibit more complex data
flows, derived from OS functions such as semaphores used to
handle interrupt signals. Additionally, RTOS supports thread-
ing, which facilitates the demonstration of thread-granularity
compartmentalization. The applications are as follows:

(1) PinLock and PinLock-FreeRTOS simulate a smart
lock by controlling a motor according to the PIN entered via
USART; (2) Temp and Temp-FreeRTOS read a temperature
sensor connected to an ADC; (3) Accel and Accel-FreeRTOS
receive accelerometer data via I2C bus and transmits the
results via USART; (4) Gyro and Gyro-FreeRTOS receive
gyroscope data through an SPI bus and transmit it via USART;
(5) SD-FatFS and SD-FatFS-FreeRTOS mounts a file system
on SD card insertion, and intensively test file operations in a
loop; (6) USBVCom and USBVCom-FreeRTOS emulates a
USB to a serial port device which facilitates the connection
of a serial port to a desktop computer.

We utilize PinLock [12], a system typically found in IoT.
All other applications are selected from the NXP MCUXpresso
SDK [29] to cover a wide range of functionalities and com-
plexity levels, including peripherals, communication protocols,
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Table III: Bare-metal and RTOS applications with various sensitive data protected using different compartmentalization
techniques in comparison. The table shows the sensitive data objects annotated in the firmware code (Sensitive Data), number of
source lines of firmware code (#LoC), number of identified compartments (#C), average number of functions per compartment
(#Fn), and average size of the compartment (Size) under each compartmentalization technique. The results for the bare-metal
applications with thread-based compartments are unavailable due to the absence of an OS in the firmware.

Application Sensitive Data #LoC
Sensitive Data Flow Function Component Thread
#C #Fn Size (KB) #Fn Size (KB) #C #Fn Size (KB) #C #Fn Size (KB)

B
ar

e-
m

et
al

PinLock key, buf, USART, GPIO, HASHCRYPT 43.5K 15 2.3 0.55 34 0.35 4 8.5 1.57 - - -
Temp temp, completed_flag, USART, ADC0 53.2K 14 4.8 1.45 67 0.45 2 33.5 9.05 - - -
Accel r_buffer, x, y, z, USART, I2C 53.7K 6 11.8 3.28 71 0.45 2 35.5 9.48 - - -
Gyro x, y, z, USART, SPI, PIN_INT 54.9K 14 5.2 1.63 73 0.46 3 24.3 6.93 - - -
SD-FatFS w_buffer, r_buffer, USART, SDIO 84.6K 6 34.5 8.39 207 0.43 5 41.4 10.03 - - -
USBVCom cdc_vcom_handler, USART, USB 65.4K 7 18.4 5.57 129 0.48 2 64.5 19.03 - - -

Fr
ee

R
TO

S

PinLock key, buf, USART, GPIO, HASHCRYPT, usart_sem, gpio_sem 68.2K 17 4.5 0.62 77 0.28 4 19.3 2.02 10 7.7 0.92
Temp temp, completed_flag, USART, ADC0, adc_sem 78.1K 15 7.3 1.51 110 0.37 3 36.7 6.77 11 10.0 1.98
Accel r_buffer, x, y, z, USART, I2C, i2c_sem 78.7K 7 16.3 3.14 114 0.37 3 38.0 7.07 5 22.8 4.32
Gyro x, y, z, USART, SPI, PIN_INT, spi_sem 80.0K 15 7.7 1.67 116 0.38 4 29.0 5.76 12 9.7 2.05
SD-FatFS w_buffer, r_buffer, USART, SDIO, sem 109.4K 7 35.7 7.52 250 0.40 4 62.5 13.02 12 20.8 4.47
USBVCom cdc_vcom_handler, USART, USB, usart_sem, usb_sem 90.2K 8 21.5 5.16 172 0.42 4 43.0 10.13 11 15.6 3.80

Table IV: Number of shared data objects identified by different
compartmentalization techniques and their combined sizes.

Application
Sensitive Data Flow Function Component Thread

# Size (B) # Size (B) # Size (B) # Size (B)

B
ar

e-
m

et
al

PinLock 4 119 16 343 6 155 - -
Temp 4 25 29 425 3 41 - -
Accel 5 29 31 429 5 45 - -
Gyro 4 26 33 486 6 42 - -

SD-FatFS 5 1830 86 12006 4 1954 - -
USBVCom 7 1372 59 16572 5 1664 - -

Fr
ee

R
TO

S

PinLock 6 123 59 767 7 151 6 151
Temp 5 29 29 845 4 41 7 57
Accel 6 33 74 841 6 45 8 45
Gyro 5 26 76 886 7 38 7 54

SD-FatFS 6 1834 129 12490 5 1958 5 2014
USBVCom 8 1376 102 17056 6 1668 5 1786

and file system operations. We add FreeRTOS integration for
some of them without changing the semantics.

We conduct experiments to compare our compartmentaliza-
tion approach with existing ones, which compartmentalize the
firmware at function-, component-, or thread-granularity. We
implement these compartmentalization policies based on the
conceptual design of previous works [12], [9], [10], [11]. To
this end, we implemented four compartmentalization policies:
SDF (our design), thread, function, and component. We have
annotated sensitive data to be protected using the provided
pragma directives. The results are summarized in Table III.

A. Quantitative Security Analysis

We evaluate TZ-DATASHIELD using the following quanti-
tative metrics:

• Secure-World Address Space: Isolating a compartment
restricts an adversary’s capability to conduct attacks
that access resources (i.e., code, private/shared data, and
peripheral data) outside the compartment. This metric

measures the size of the address space a compartment
can access.

• Number of Return-Oriented Programming (ROP)
Gadgets: This metric quantifies the code fragments
ending with “return”, namely ROP gadget. More ROP
gadgets mean the firmware is more susceptible to ROP
attacks. We used Ropper [30] to count the number of
ROP gadgets.

• Accuracy of Static Analysis: This metric measures
over-approximation and under-approximation in terms of
data flow (see Appendix §A-C).

1) Secure-World Address Space Reduction: Figure 4 shows
the average size of secure-world address space that a com-
partment can access for different compartmentalization units.
As summarized in Table V, the SDF compartmentalization
reduces the secure-world address space accessible by a com-
partment by 85.6% for code, 96.4% for shared data, 98.2% for
peripheral data, and 80.8% in total. Compared to other com-
partmentalization units, SDF compartmentalization achieves
the highest reduction in shared data due to fine-grained data
flow tracking. Although the function-based compartmentaliza-
tion can further reduce the code and peripheral exposure by
98.4% and 99.7%, it exhibits security risks due to an increase
in the shared data exposure.

2) ROP Gadget Reduction: Figure 5 shows the numbers of
ROP gadgets found in baseline implementation (i.e., without
intra-TEE isolation), and solutions with compartmentalization
enforced at SDF, function, component, and thread granularity.
The last column of Table V shows that the sensitive data
flow units can reduce the number of ROP gadgets by 88.6%
on average. Compartmentalization in function granularity can
further reduce the number of ROP gadgets by 98.6% on
average; however, as aforementioned, it incurs more security
risks and performance overheads. Note that an attacker may
exploit available ROP/JOP gadgets within a compromised
compartment. However, it is still isolated within the compart-
ment due to CFI/DFI enforcement.
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Figure 5: Average number of ROP gadgets per compartment.

Table V: Average reduction rates of secure-world address
space and ROP gadgets per compartment achieved by different
compartmentalization techniques.

Unit
Address Space Reduction ROP

GadgetsCode Shared Data Peripheral Data Total
SDF 85.6% 96.4% 98.2% 80.8% 80.8%
Fn 98.4% 79.2% 99.7% 96.2% 98.6%
Comp 61.1% 94.6% 94.0% 38.4% 63.1%
Thread 77.8% 94.8% 96.3% 62.7% 88.5%

B. Qualitative Security Analysis

Assuming that attackers can exploit the vulnerabilities in
a compartment, this section discusses what attackers can
achieve. For example, CVE-2018-16528, CVE-2018-16525,
and CVE-2018-16526 are buffer overflow vulnerabilities in
the FreeRTOS and CVE-2021-42553 are in the USB library
for MCU. CVE-2019-7711, CVE-2019-7712, and CVE-2019-
7715 are format string vulnerabilities found in MCU software.
In particular, we are interested in whether the compromised
compartment can be utilized to (1) steal or modify private
data of itself and other compartments, (2) steal or modify the
content of shared data, (3) control or steal data from periph-
erals, (4) break the security guarantees of TZ-DATASHIELD’s
security monitor. We experimentally show that these CVEs
can be confined within their affected compartments, instead
of being exploited to reveal to tamper with sensitive data.

1) Shellcode Injection Attack: Shellcode injection attacks
can be launched by exploiting software vulnerabilities, such

as buffer overflow and format string vulnerabilities to execute
arbitrary code. The attacker can steal or modify the private
data of the compromised compartment or other compartments
by injecting store/load instructions to access these data or
necessary code to utilize existing instructions inside the com-
promised compartments. Even worse, the attacker can modify
the data of the security monitor to compromise the whole
system utilizing the injected code. However, TZ-DATASHIELD
ensures that the code area is not writable and the data area is
not executable. Also, our SFI mechanism prevents the attacker
from accessing the data of the security monitor.

2) Code-Reuse Attack: The code-reuse attack is a type of
exploitation where an attacker leverages existing code within
the firmware to perform malicious actions, circumventing tra-
ditional security measures like data execution prevention. An
attacker can hijack the control flow by overwriting the return
address on the stack or tampering with function pointers. The
attacker can also reuse the code of other compartments that
contain shared data or peripheral accessing instructions to steal
or modify data. However, the SFI mechanism can block the
compromised compartment from accessing the code of other
compartments. As described in §V-C, TZ-DATASHIELD has a
shadow stack to ensure the integrity of return addresses and the
modification of the function pointers can be detected before
the call due to CFI violation.

3) Data-Only Attack: Data-only attacks [24], [25] focus on
manipulating the sensitive data within an application to affect
its behavior without hijacking the control flow. The attacker
may utilize a compromised compartment to manipulate the
value of shared data used in conditional checks (e.g. if-
else statements), thereby altering the system’s behavior to
bypass security measures or initiate unauthorized actions.
Additionally, the attacker may directly manipulate the output
of a peripheral to execute malicious operations. The attacker
may also directly manipulate the output of a peripheral to
perform malicious operations. Unlike attacks that hijack the
control flow, data-only attacks, which do not alter the control
flow but disrupt legitimate data flow, are difficult to detect
with CFI or SFI. However, the manipulation of the shared or
peripheral data can be defeated by our DFI mechanism.

4) IRQ Handler Attack: The IRQ handler is a special type
of function that is called when an interrupt is triggered by
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Figure 6: The runtime overhead of bare-metal and RTOS applications with different compartment units. CFI/DFI enforcement
is enabled in all compartmentalization techniques with one target validated at every shared and peripheral data access (N=1).

Table VI: Micro-benchmark results of TZ-DATASHIELD. SFI
and CFI/DFI latency are for one target address to validate.

Component Min. (µs) Max. (µs) Avg. (µs)
SFI 0.21 2.20 0.72
CFI/DFI (N=1) 0.17 0.31 0.19
Compartment Switch 2.13 2.66 2.28
Compartment Load 0.39 0.58 0.45
Compartment Unload 0.26 0.47 0.33

hardware. The attacker can exploit this to access other com-
partment resources from the IRQ handler of a compromised
compartment because the security monitor does not have a
chance to securely handle the compartment switching when a
hardware IRQ is invoked. However, we address this issue by
developing a secure interrupt dispatcher, as described in §V-D.

C. Runtime Overhead

1) Application Benchmarks: We measured the runtime
overhead of Twelve applications. The results (Figure 6) detail
the overhead contributions from SFI, CFI/DFI, compartment
switch, compartment load, and compartment unload. Overall,
the average overhead over all applications is imposed by
load/unload/switch (1.4%), SFI (6.3%), and CFI/DFI (7.0%),
total 14.7%. The results indicate that the overhead is signif-
icantly influenced by the compartment unit, regardless of the
applications. In most cases, the function unit incurs the highest
overheads due to frequent compartment switches. As com-
partment granularity increases, the overheads for compartment
switch, load, and unload increase, and the overheads for SFI
and CFI/DFI decrease. Similarly, the component and thread
units show low overhead in the compartment but higher se-
curity enforcement overhead as these compartment units have
a larger memory footprint. For instance, the Accel application
experiences 5.6% and 6.1% overhead for SFI and CFI/DFI,
and 0.5% overhead for the compartment switch when using the
component compartment. With function compartment units,
however, the overheads are 3.9%, 7.9%, and 30.6%, respec-
tively. Compared to component and function compartments,
SDF compartments achieve 5.8%, 7.6% overhead for SFI and
CFI/DFI, and 0.7% overhead for the compartment switch. The

Table VII: Average memory footprint (KB) of sensitive data
protection with different compartmentalization techniques.

SDF Function Component Thread

Flash
Memory
(Code)

Security Monitor 13.98 23.60 12.99 13.21
Compartments 21.66 35.23 20.25 14.96
Normal World 10.98 10.97 10.83 15.12
Total 46.62 69.81 44.07 43.29

SRAM
(Data)

Security Monitor 4.82 9.35 4.35 4.46
Compartments 0.85 0.85 0.85 0.49
Normal World 1.32 1.32 1.32 1.56
Total 6.99 11.51 6.52 6.51

SDF compartments provide better security with comparatively
moderate overheads.

2) Micro-benchmarks: To further understand the runtime
overhead incurred by the CFI/DFI enforcement, we measured
the overhead associated with different values of N. N is a con-
figurable number that controls the number of control transfer
and data access targets to be validated by the security monitor.
Figure 8 demonstrates that the overheads increase almost
linearly with N. For instance, with our compartmentalization
based on sensitive data flow, the overhead is 6.90% when N=1
and it increases roughly 1.4% whenever N increments. The
difference between the overheads of different compartment
units is due to the compartment switch – the checking mech-
anism needs to take more steps to ensure the control flow in
the compartment level, making sure it is a legal compartment
invocation, and this checking is mandatory and not controlled
by N. We also measured the time to take one operation for
the SFI check, the CFI/DFI check, the compartment switch,
the compartment load, and the compartment unload as shown
in Table VI. The results show that the time consumption of SFI
checks varies due to the difference in compartment memory
footprint, while the compartment switch is relatively stable.
Note that in our application benchmarks, the compartment
load/unload overhead is zero as the compartments are loaded
during boot time and the RAM space in the secure world is
large enough to accommodate all compartments.

D. Memory Overhead

We evaluate the memory overhead of TZ-DATASHIELD by
computing the size of different sections of compartments, the
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Figure 7: Memory footprint of sensitive data protection using different compartmentalization techniques (size is normalized to
the unprotected firmware).
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Figure 8: Runtime overhead incurred by the CFI/DFI enforce-
ment with an increasing number of control transfer and data
access targets to validate (N=[1..8]).

security monitor, and normal-world firmware. Table VII shows
the memory overhead of TZ-DATASHIELD in comparison
with other compartmentalization techniques. We observed that
the memory overhead depends on both the application and
the selected compartmentalization units. TZ-DATASHIELD in-
creases the memory usage by 16.7 KB for the security monitor
and by 136 bytes per compartment to store the metadata of
compartments, including the initial allowed memory regions
and the position of the compartments. The security monitor
also has a 4-KB memory pool used for the dynamic memory
allocation of compartments, which is configurable.

For compartments, the memory overhead mainly comes
from the code instrumentation to implement SFI, CFI, and
DFI. For each indirect memory access or branch instruction,
the instrumentation adds a few instructions to check the
memory access or branch target. If an application has more
indirect memory accesses or branches, the memory overhead
will be higher. For example, the Accel and Gyro applications
have more indirect memory accesses due to frequent device
communication, leading to higher memory overhead. Another
source of memory overhead incurred by compartments is the
code to copy data from read-only memory to the compart-
ment’s SRAM region. This overhead is proportional to the
number of compartments (192 bytes). As a result, the function
compartmentalization has a higher memory overhead than
other units, as it creates more compartments.

VIII. RELATED WORK

Compartmentalization for MCUs. Compartmentalization
techniques [9], [12], [11], [10] are crucial for enhancing the
security of MCUs by isolating different compartments. As
described in §III, these techniques vary in compartment unit
and enforcement mechanisms to meet different requirements.
From the perspective of shared data protection, ACES [12]
proposes an emulator for stack protection, while EC [10] and
CRT-C [11] introduce type extensions in their runtime services
for access control over typed (annotated) shared data. Unlike
TZ-DATASHIELD, these techniques do not ensure the control
and data integrity of the shared data. Similarly, M2Mon [19]
and EPOXY [20] leverage static analysis to identify code to
be protected and separate the code from others. M2Mon [19]
incorporates a reference monitor that intercepts and controls
MMIO operations based on registered rules, detecting these
operations through static analysis. EPOXY [20] identifies
firmware segments requiring privilege mode. It implements a
privilege overlay, granting privileges only for the execution of
these segments, rather than the entire firmware. While M2Mon
and EPOXY separate the target operations from others, TZ-
DATASHIELD isolates each compartment from other compart-
ments for sensitive data protection.
Intra-TEE Isolation for ARM TrustZone. Since ARM
TrustZone has been widely supported in the ARMv7-A and
ARMv8-A architectures, existing works [31], [15], [14] have
proposed compartment isolation techniques to enhance the
security of software running in the secure world using Trust-
Zone. Specifically, Rubinov et al. [31] automatically partitions
an Android application into the secure world and the normal
world to protect sensitive programs handling confidential data
in the secure world as Trust Applications (TAs). Solutions like
PrOS [15] and ReZone [14] have been developed to protect
TAs by enforcing the isolation of the trusted OS in the secure
world. Since there is no isolation mechanism within the secure
world of ARM TrustZone, a compromised trusted OS can
subvert the entire system. PrOS [15] proposes a software-based
virtualization technique for each trusted OS to have its own
virtualized TrustZone resources. Similarly, ReZone [14] relies
on hardware-based memory isolation such as sMMU.

For MCUs supporting ARM TrustZone, several fault isola-
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tion techniques [32], [21], [33], [34] tailored to this environ-
ment have been proposed. Pinto et al. [32] leverages TrustZone
to virtualize multiple cores for Cortex-M devices. RT-TEE [21]
is a real-time trusted execution environment to resolve real-
time constraints. Specifically, it isolates device drivers and
the reference monitor protects the real-time system from
compromised drivers within the secure world. Unlike these
works, TZ-DATASHIELD focuses on isolating the data flows of
sensitive data within the secure world for data confidentiality
and integrity.

IX. DISCUSSION AND LIMITATION

Attacks through NSC. A sophisticated adversary with full
knowledge of the target firmware may send malicious input
from the normal world to an SDF compartment in the secure
world through the NSC region. Although TZ-DATASHIELD
ensures that such input will not have any data dependency
on the sensitive data, the adversary may hijack the execu-
tion of the compartment by exploiting a vulnerability in the
compartment through the input. In addition, the ARMv8-
M architecture suffers from return-to-non-secure vulnerabil-
ities [35], which redirect a compromised control transition
instruction in the secure world to malicious code residing in
the normal world when exploited. Although preventing such
attempts through the NSC region completely is out of our
scope, TZ-DATASHIELD confines the impact of such an attack
within the compartment, significantly limiting the chance of
compromising the sensitive data.
Direct Memory Access (DMA) Attacks. DMA enables direct
data transfers from/to peripheral-mapped regions without the
intervention of the CPU. This process consists of three steps:
(1) the processor writes the DMA configuration to the DMA
controller, including the memory address to use; (2) upon
triggering a DMA operation, the DMA controller takes control
of the bus to transfer the data; (3) once the transfer com-
pletes, the DMA controller issues an interrupt to notify the
processor. The integrity of DMA operations hinges entirely
on the configuration settings. Without security measures for
the DMA configuration, attackers could manipulate DMA
transfers to access unauthorized memory areas. Although we
do not consider these attacks, orthogonal solutions like D-
Box [36], which secures the areas storing DMA configurations,
can be adopted.
Mimicry/Confused Deputy Attacks. An attacker may exploit
a compromised compartment to perform a mimicry attack
(e.g., control-flow bending) or confused deputy attack by
invoking another compartment within the valid control/data
flows where the attacker tries to disguise malicious actions as
legitimate ones to avoid detection by CFI and DFI checks.
However, we note that attackers are limited to performing
attacks that do not violate both our CFI and DFI checks.
Since attacks that keep both control and data flows intact are
challenging, this essentially limits the impact of the attacks to
manipulating compartment loading times and compromising
availability, which is outside the scope of this work.

Type Confusion/VPTR Overwrite Attacks. For firmware
written in C++, attackers may exploit type confusion or
virtual table pointer (VPTR) overwrite vulnerabilities to ma-
nipulate the control flow of a compartment, bypassing TZ-
DATASHIELD’s protection. We plan to employ existing solu-
tions to mitigate these issues, such as HexType [37], which
are orthogonal to our work.
Over-approximated Compartments. Static program analysis
is known to suffer from over-approximation due to the chal-
lenges of accurate points-to analysis. Consequently, similar to
other compartmentalization techniques based on static analy-
sis [9], [10], [12], [11], TZ-DATASHIELD may inadvertently
include extraneous firmware code and data that is unrelated
to the sensitive data it aims to protect into a compartment.
This could lead to the inclusion of unnecessary variables in
the sensitive data flow. Note that this may affect runtime
performance, but never poses additional security risks.

X. CONCLUSION

TZ-DATASHIELD proposes a compiler tool to protect the
confidentiality and integrity of sensitive data using ARM
TrustZone for MCU-based systems. After developers annotate
data to be protected, it automatically identifies the sensitive
data flow and generates SDF compartments. By leveraging
TrustZone primitives, TZ-DATASHIELD thwarts strong adver-
saries that exploit vulnerabilities in privileged software. We
introduce an intra-TEE isolation mechanism using SFI to pro-
vide an isolated execution environment for each compartment
in the secure world. Additionally, we propose a lightweight
mechanism to validate the control and data flow integrity
of compartments that access shared and peripheral data. We
implemented a prototype of TZ-DATASHIELD and analyzed
its security and performance. Our evaluation shows that TZ-
DATASHIELD significantly reduces the attack surface only
incurring a minimal performance and memory overhead.
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Table VIII: Additional evaluation results. #Annot. SD and #Annot. Peri. represents the number of annotated sensitive data and
peripherals. Identified Sensitive Data shows the sensitive data identified by TZ-DATASHIELD’s static analysis automatically.
#C SW and #C TRV represent the number of compartment switches and compartments traversed in the main loop of the
application. #SFI, #CFI, and #DFI show the total number of SFI, CFI, and DFI checks in the compartments, respectively.

Application #Annot. SD #Annot. Peri. Identified Sensitive Data #C SW #C TRV #SFI #CFI #DFI

B
ar

e-
m

et
al

PinLock 2 3 USART_config, rx_index 12 8 1 19 7
Temp 2 2 ADC0_config, ADC0_commandsConfig, ADC0_triggersConfig, g_serialHandle 8 5 0 17 6
Accel 4 2 ACCEL_I2C_config 6 3 0 9 9
Gyro 3 3 SPI_config, g_serialHandle 12 6 0 20 10
SD-FatFS 2 2 g_fileSystem, g_fileObject, g_sd 24 4 3 26 16
USBVCom 1 2 g_serialHandle, g_UsbVcomConfig, s_cdcConfigList, g_UsbVcomDicEndpoints 18 4 4 21 21

Fr
ee

R
TO

S

PinLock 4 3 USART_config, rx_index 16 10 3 23 9
Temp 3 2 ADC0_config, ADC0_commandsConfig, ADC0_triggersConfig, g_serialHandle 10 6 2 19 7
Accel 5 2 ACCEL_I2C_config 8 4 1 11 10
Gyro 4 3 SPI_config, g_serialHandle 14 7 1 22 11
SD-FatFS 3 2 g_fileSystem, g_fileObject, g_sd 26 5 5 28 17
USBVCom 3 2 g_serialHandle, g_UsbVcomConfig, s_cdcConfigList, g_UsbVcomDicEndpoints 22 5 5 25 23

APPENDIX A
ADDITIONAL EVALUATION

A. Developer Efforts for Annotation

Columns Annotated Sensitive Data (#Annot. SD) and
Annotated Peripherals (#Annot. Peri.) in Table VIII present
the developer effort required to annotate sensitive data and
peripherals in the applications, respectively. Annotating sensi-
tive data, including sensitive local, global, and heap variables
is straightforward as the developer only needs to append a
preprocessor provided by TZ-DATASHIELD to the variable
name, as shown in Listing 2. Annotating peripheral data re-
quires the developer to specify the base address and size of the
peripheral MMIO region to be protected using a preprocessor.
This information can be found in the MCU’s reference manual
or SDK header files, which proficient developers can easily
identify. Column Identified Sensitive Data shows the number
of other sensitive data points identified by TZ-DATASHIELD’s
static analysis tool. These data points are not annotated by
developers but are automatically identified by the tool. Both
the annotated and identified sensitive data are used to generate
the compartmentalization configuration.

B. Compartment Switches and Traversing

Columns Compartment Switches (#C SW) and Compart-
ment Traversed (#C TRV) in Table VIII show the number of
compartment switches and compartments traversed in the main
loop of the applications, respectively. These numbers provide
more insights into the runtime overhead of TZ-DATASHIELD.
A typical MCU application consists of the initialization and the
main loop phases. The initialization phase configures the MCU
peripherals while the main loop handles the core application
logic. The reported numbers of compartment switches and
traversals are measured using the compartments traversed in
the main loop only as these are repeatedly executed. We
exclude compartments used in the initialization phase as they
are invoked only once.

C. Accuracy of Static Analysis

This metric measures the accuracy rates of over-
approximation and under-approximation. The accuracy of the
static analysis tool in identifying sensitive data flow units
is crucial for the effectiveness of TZ-DATASHIELD. Over-
approximation occurs when the analysis identifies data flow
that does not exist in reality, leading to potential false positives.
While conservatively isolating more code and data in a com-
partment with over-approximation does not reveal sensitive
data to potential attacks, it may increase the performance
overhead of TZ-DATASHIELD. Under-approximation involves
missing data flow, resulting in false negatives. This poses
a security risk, as untracked sensitive data flows could be
exploited by an adversary, undermining the protecting mech-
anisms enforced by TZ-DATASHIELD. Our results show that
TZ-DATASHIELD identified 16 actual data flows out of 18
reporting ones due to our conservative configuration with
Andersen’s points-to algorithm. While this accuracy is aligned
with industry-leading tools, it is worth noting that the inherent
limitations posed by Rice’s Theorem [38] prevent the absolute
identification of all data flows.

D. Case Studies

To demonstrate the protection provided by TZ-
DATASHIELD, we selected three applications (Accel,
SD-FatFS, and USBVCom) and examined ways in which an
attacker can access sensitive data. These applications cover
several commonly used peripherals with different operation
complexity.

1) Accel: This application reads an accelerometer sensor
through the I2C bus and sends data through the USART port.
Security Objective. We want to protect the integrity of the
acceleration data, preventing an attacker from modifying the
data.
SDF Protection. The peripheral I2C and USART are assigned
to the secure world, ensuring that TrustZone prevents any
code in the normal world from accessing these peripherals.
This isolation safeguards against attacks originating from
corruption in normal-world firmware. Moreover, corrupted
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compartments cannot bypass integrity checks performed by the
security monitor before being loaded. Even if a compromised
compartment were to be loaded and executed, the SFI/CFI/DFI
mechanisms enforce constraints on destination addresses. For
instance, a compartment responsible for initializing the I2C
bus is restricted from accessing the I2C data register, while a
compartment operating the sensor via the I2C bus is prohibited
from modifying configuration-related registers.

2) SD-FatFS: This application reads/writes data on an SD
card.
Security Objective. We want to keep the confidentiality and
integrity of the data from other parts of the application.
SDF Protection. Given the diverse sources of data written
to or read from the SDIO, it is critical to protect both
global and local variables that may ultimately influence or
be influenced by the data on the SD card. To achieve this,
all functions involving such variables must be placed within
a compartment. An attacker could attempt to steal or modify
the data through two potential methods: indirectly accessing
the aforementioned variables or directly accessing the SDIO’s
data register. However, as discussed in previous scenarios, both
approaches are rendered infeasible due to the implemented
security mechanisms.

3) USBVCom: This application emulates a virtual COM
port or serial port. The COM port is widely used in embed-
ded systems and devices, such as medical equipment, GNSS
modules, Bluetooth, and WiFi modules. A USB virtual COM
port is typically used to connect such devices to a desktop or
server computer to transfer data.
Security Objective. We want to defend our data transferred
using this interface against stealing or tampering attempts.
SDF Protection. To achieve this, the USB port and the US-
ART used by this application need to be assigned to the secure
world, and the code used to operate USART and USB needs
to be put into compartments. There are three ways in which
an attacker could steal or tamper with data during transfer:
(1) directly accessing the USART data register connected to
the device, (2) accessing the USB’s data buffer, and (3) reading
or writing local variables used to transfer data from the USB
buffer to the USART data register. With TZ-DATASHIELD,
the USART data register, the USB buffer, and the stack
containing local variables are all protected by assigning the
register to the secure world and protecting the buffer and the
stack. Additionally, the SFI/CFI/DFI mechanisms ensure that
load instructions cannot transfer data to the normal world, as
they verify the destination address of each load instruction,
preventing attackers from exploiting compartment code.

E. Formal Verification

To formally verify the correctness of SFI, CFI, and DFI
enforcement of TZ-DATASHIELD using CBMC, we ported
the essential functions that ensure the enforcement of these
mechanisms to a desktop machine running Linux. We also
model the SFI, CFI, and DFI checks as assertions in the test
code, and then use CBMC to check the correctness of these

assertions. The results show that the SFI, CFI, and DFI checks
are correctly enforced in the firmware code.

1) SFI: To verify the correctness of the SFI enforcement,
we need to ensure the correctness of check() function, which
can be modeled as:

check(addr, i) = true⇒ si ⩽ addr ⩽ ei,

check(addr, i) = false⇒ addr < si ∨ addr > ei,
(1)

where si and ei are the start and end addresses of the
compartment identified by the ID i, respectively.

2) CFI and DFI: To verify the correctness of the CFI
enforcement, we need to ensure the correctness of shadow
stack operation functions (shadow_push() and shadow_pop()).
The following equations show the model of shadow stack
operation functions:

shadow_push(addr)⇒ S.top← prev_top+ 4

∧ S.data[S.top] = v,

shadow_pop(addr)⇒ result = S.data[S.top]

∧ S.top← prev_top− 4,

(2)

where S is the shadow stack, S.top is the top of the shadow
stack, S.data is the data stored in the shadow stack, and v is
the value to be pushed into the shadow stack.

3) DFI: To verify the correctness of the DFI enforcement,
we need to ensure the correctness of the update_rdt(),
get_rdt() and check_store(), which can be modeled as:

update_rdt(addr, store_id)⇒
RDT[addr]← store_id,

get_rdt(addr)⇒
result = RDT[addr],

check_store(addr, store_id) = true⇒
RDT[addr] ∈ Allowed_id,

check_store(addr, store_id) = false⇒
RDT[addr] /∈ Allowed_id,

(3)

where RDT is the RDT, and Allowed_id is the set of store_id
that are allowed to store data to the address addr according to
the static analysis result.
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APPENDIX B
ARTIFACT APPENDIX

TZ-DATASHIELD is a novel LLVM compiler tool that
enhances ARM TrustZone with sensitive data flow (SDF)
compartmentalization, offering robust protection against strong
adversaries in MCU-based systems. This artifact provides
detailed information on how to access the source code of TZ-
DATASHIELD and how to run and evaluate it.

A. Description and Requirements

This section lists all the information necessary to recreate
the experimental setup to run the artifact.

1) How to Access: The artifact is available at a public
repository [18], which contains the source code referenced in
this paper. We provided step-by-step instructions to run the
artifact in the README.md file in the repository. The artifact is
also available at https://doi.org/10.5281/zenodo.14257983.

2) Hardware Dependencies: Our artifact requires a com-
modity desktop machine with an x86-64 CPU and an ARMv8-
M microcontroller unit (MCU) with TrustZone-M support.
Specifically, we used an LPCXpresso55S69 Development
Board* from NXP Semiconductors, which is equipped with
an ARM Cortex-M33 processor.

3) Software Dependencies: The artifact requires a Linux-
based operating system. We tested the artifact on Ubuntu 22.04
LTS.

4) Benchmarks: None.

B. Artifact Installation and Configuration

We first require that our repository is cloned to a local
directory via git clone, and then follow the instructions from
README.md file in the repository.

C. Experiment Workflow

There are four main steps to run the experiments: (1) Build
the compiler tool of TZ-DATASHIELD. TZ-DATASHIELD uti-
lizes two compilers, GCC 11.4.0 and Clang/LLVM 14.0.6.The
clang compiler is used to compile the source code of the MCU
application to object files (.o) and run LLVM passes to enforce
SFI, CFI, and DFI. The GCC compiler links the object files
into two different firmware images: one for the normal world
and one for the secure world. (2) Run static program analysis.
Building the static analysis tool of TZ-DATASHIELD requires
a general-purpose compiler on the host machine. (3) Build the
firmware images. The firmware images are compiled using
the compilers that we just built. Use the Makefile provided
in the repository to compile the firmware. (4) Download the
firmware images to the MCU. The MCU development board
has an on-board J-Link debugger that can be used to download
the firmware images to the MCU. The download process can
also be automated using the Makefile.

*https://www.nxp.com/design/design-center/software/
development-software/mcuxpresso-software-and-tools-/lpcxpresso-boards/
lpcxpresso55s69-development-board:LPC55S69-EVK

D. Major Claims

• Claim 1: The static analysis tool of TZ-DATASHIELD
can automatically identify sensitive data flows in the
annotated source code and output the function/global
variable list that needs to be compartmentalized.

• Claim 2: The compiler tool of TZ-DATASHIELD can
generate compartmentalized firmware images with SFI,
CFI, and DFI enforcement.

E. Evaluation

Before starting the evaluation, ensure that the static analysis
tool and the compilers for TZ-DATASHIELD are successfully
built and that the MCU development board is connected to
the host machine. To verify the connection, run the lsusb
command in the terminal, and the output should display the
J-Link debugger, as shown.

TZDS> lsusb
...
Bus 001 Device 003: ID 1366:1024 SEGGER J-Link
...

For detailed steps, follow the instructions in the README.md
file in the repository.

1) Experiment (E1): [Sensitive Data Flow Identification] [3
human-minutes + 10 compute-minutes]: This experiment aims
to identify the sensitive data flows in the annotated source
code.

[Preparation] Open a new terminal and navigate to one
application directory, for example, adc (there are a total of 12
applications that can be tested with).

[Execution] Run the static analysis tool of TZ-
DATASHIELD by invoking commands:

cd lpc_firmware
# use adc as an example
cd adc
# install/update template code (including SDK)
./install-template.sh
make clean && make COMPILER=clang -j $(nproc)
make sdf

[Results] The .yaml file shows the compartments, periph-
eral, and shared global variables.

$ cat output/comp.yaml
base:

DbgConsole_Init, FLEXCOMM_GetInstance, ...:
- g_serialHandle
- USART

DbgConsole_Printf, ...:
- g_SensorData, g_serialHandle
- USART

LPADC_Init, LPADC_DoResetConfig, ...:
- ADC0_config
- ADC

...

2) Experiment (E2): [Compartmentalized Firmware Gener-
ation] [5 human-minutes + 20 compute-minutes]: This experi-
ment aims to generate the compartmentalized firmware images
with SFI, CFI, and DFI enforcement.
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[Preparation] Same as E1.
[Execution] Run the compiler tool of TZ-DATASHIELD by

invoking commands:

cd lpc_firmware
# use adc as an example
cd adc
# install/update template code (including SDK)
./install-template.sh
make clean && make COMPILER=clang -j $(nproc)
ls -l output/adc.hex

[Results] The compiler tool will generate the firmware
images under output directory.

3) Experiment (E3): [Download Firmware Images to
MCU] [10 human-minutes]: This experiment aims to down-
load the firmware images to the MCU and test if the firmware
functions as expected.

[Preparation] The first step is the same
as E1. Then, open another terminal and run
minicom -c on -b 115200 -D /dev/ttyACM0 to open a
serial terminal connected to the MCU.

[Execution] Download the firmware images to the MCU by
invoking commands:

Terminal 1:
cd lpc_firmware
# use adc as an example
cd adc
./install-template.sh
make clean && make COMPILER=clang -j $(nproc)
make download

Terminal 2:
$ minicom -c on -b 115200 -D /dev/ttyACM0

Welcome to minicom 2.8

OPTIONS: I18n
Port /dev/ttyACM0, 11:42:50

Press CTRL-A Z for help on special keys

Current temperature: 28.44
Current temperature: 28.47
...

[Results] If the firmware runs successfully, the terminal will
display the output of the tested application in terminal 2.

F. Artifact Changes for Minor Revision

We provide instructions to run the following additional ex-
periments that we provide beyond the initially submitted paper.
Specifically, our shepherd has requested to “add statistics about
analyses of applications,” which we address with the following
experiments:

1) Experiment (E4): [Over-approximation and Under-
approximation Rate] [10 human-minutes + compute-minutes]:
This experiment aims to measure the accuracy of TZ-
DATASHIELD’s static analysis tool by using well-understood
C/C++ programs with known data slices.

[Preparation] Open a new terminal and navigate to
slicing_benchmark.

[Execution] Run the static analysis tool by invoking com-
mands: [Results] The actual and analyzed program slices will

cd slicing_benchmark/1
./compile.sh

show on the terminal with the last line showing the rates.

$ ls
1.c 1.svf.bc compile.sh
groundtruth.png icfg.dot vfg.dot
1.ll callgraph.dot
full_svfg.dot groundtruth.svg
pag.dot vfg_model.dot

Now you can compare the ground truth value flow
graph (groundtruth.svg) and the generated value
flow graph (vfg_model.dot, using an online tool, like
https://dreampuf.github.io/).

2) Experiment (E5): [SFI, CFI, and DFI Enforcement] This
experiment aims to check if the SFI, CFI, and DFI mechanisms
can block illegal access to global variables and peripherals.
The attacks are implemented as maliciously modified com-
partments.

[Preparation] Open a new terminal and navigate to
attacks/<attack number>. Then, open another terminal and
run minicom -c on -b 115200 -D /dev/ttyACM0 to open a
serial terminal connected to the MCU.

[Execution] There are four different attacks, launch the
attacks by invoking commands:

Terminal 1:
cd attacks/1
# or cd attacks/2
make download

Terminal 2:
$ minicom -c on -b 115200 -D /dev/ttyACM0

Welcome to minicom 2.8

OPTIONS: I18n
Port /dev/ttyACM0

Press CTRL-A Z for help on special keys

SFI violation detected!

[Results] The terminal connected to the MCU development
board should show an illegal access detected message.
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