t.)

Check for
Updates

Detecting Vulnerabilities in Linux-Based Embedded Firmware
with SSE-Based On-Demand Alias Analysis

Kai Cheng Yaowen Zheng" Tao Liu
SIAT, CAS ¥ Nanyang Technological University The Pennsylvania State University
Sangfor Technologies Inc. Singapore USA
China yaowen.zheng@ntu.edu.sg tul459@psu.edu
chengkai@sangfor.com.cn
Le Guan Peng Liu Hong Li
University of Georgia The Pennsylvania State University IIE, CAS *
USA USA China
leguan@uga.edu pxl20@psu.edu lihong@iie.ac.cn
Hongsong Zhu Kejiang Ye Limin Sun
IIE, CAS * SIAT, CAS * IIE, CAS *
School of Cyber Security, UCAS § China School of Cyber Security, UCAS §
China kj.ye@siat.ac.cn China
zhuhongsong@iie.ac.cn sunlimin@iie.ac.cn

ABSTRACT

Although the importance of using static taint analysis to detect taint-
style vulnerabilities in Linux-based embedded firmware is widely
recognized, existing approaches are plagued by following major
limitations: (a) Existing works cannot properly handle indirect call
on the path from attacker-controlled sources to security-sensitive
sinks, resulting in lots of false negatives. (b) They employ heuristics
to identify mediate taint source and it is not accurate enough, which
leads to high false positives.

To address issues, we propose EmTaint, a novel static approach
for accurate and fast detection of taint-style vulnerabilities in Linux-
based embedded firmware. In EmTaint, we first design a structured
symbolic expression-based (SSE-based) on-demand alias analysis
technique. Based on it, we come up with indirect call resolution
and accurate taint analysis scheme. Combined with sanitization
rule checking, EmTaint can eventually discovers a large number of
taint-style vulnerabilities accurately within a limited time. We eval-
uated EmTaint against 35 real-world embedded firmware samples
from six popular vendors. The result shows EmTaint discovered
at least 192 vulnerabilities, including 41 n-day vulnerabilities and
151 0-day vulnerabilities. At least 115 CVE/PSV numbers have been

“Yaowen Zheng is the corresponding author

*Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
*Institute of Information Engineering, Chinese Academy of Sciences
§School of Cyber Security, University of Chinese Academy of Sciences

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07...$15.00
https://doi.org/10.1145/3597926.3598062

360

allocated from a subset of the reported vulnerabilities at the time of
writing. Compared with state-of-the-art tools such as KARONTE
and SaTC, EmTaint found significantly more vulnerabilities on the
same dataset in less time.

CCS CONCEPTS

« Security and privacy — Software security engineering.

KEYWORDS

On-demand alias analysis, Taint analysis, Embedded firmware

ACM Reference Format:

Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong
Zhu, Kejiang Ye, and Limin Sun. 2023. Detecting Vulnerabilities in Linux-
Based Embedded Firmware with SSE-Based On-Demand Alias Analysis. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA ’23), July 17-21, 2023, Seattle, WA, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598062

1 INTRODUCTION

With the emerging of the Internet of Things (IoT) technologies,
embedded devices are widely deployed in our daily life. For fast
development, vendors of devices prefer to customize Linux kernel
and compose the embedded Linux-based firmware to manage and
control the device. For example, almost all the mainstream wire-
less routers are equipped with Linux-based embedded firmware.
However, due to lack of comprehensive security assessment from
vendors, Linux-based embedded firmware suffers from a number
of vulnerabilities without revealed, which has brought significant
impact to cyberspace security. Among various vulnerability types,
taint-style vulnerability is a typical vulnerability type where the
user input can reach to a security-sensitive sink without proper
check or sanitization [41]. Since Linux-based embedded devices

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3597926.3598062
https://doi.org/10.1145/3597926.3598062
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598062&domain=pdf&date_stamp=2023-07-13

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Front-end

@

POST /dnslookup.cgi HTTP/1.1 —
Host: 192.168.1.2 Send <
Content-Length: 27 Request (== 00

Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

Back-end N

http_d() {

handle_post(char *req, post_d *d) {
void (*fn)(post_d*);
char *name = getReqName(req);
name is "dnslookup.cgi"
fn = indexHandler(name);
(*fn)(d);

char req[0x5017;
post_d *d;

recv(fd, req, 0x500, 0);
d = parse_data(req);
handle_post(req, d);

User-Agent: Mozilla/5.0
Authorization: Basic Y WRtaW
Content-Type: application/x-www-
form-urlencoded

\

‘ lookup=Lookup&host name=router /

Figure 1: Motivating example in the NETGEAR DGN2200 router.

such as routers and web cameras frequently communicate with out-
side world, taint-style vulnerabilities are more likely to be triggered,
so that we need to prioritize the detection for it.

Static taint analysis is an effective technique for finding taint-
style vulnerabilities in embedded firmware, e.g, KARONTE [30] and
SaTC [7]. It can be used to perform the entire analysis of firmware
and does not require the emulation and real devices. In the static
taint analysis, taint sources refer to library functions (e.g., recv,
recvirom) that receive the user input, and taint sinks refer to the
security sensitive library function (e.g., strcpy, system) that can be
exploited to cause memory corruption or command injection. The
basic idea of taint analysis is to find data flow path from taint source
to taint sink (we call it potential vulnerable path), and then perform
the security check on the path to infer whether the vulnerability
exists or not.

Challenges. However, effectively revealing potential vulnerable
paths is a challenging problem for taint analysis on embedded bi-
naries. The reason is twofold. On the one hand, in the back end
of Linux-based firmware, most of the potential vulnerable paths
involve indirect calls (see §4.3), some of which cannot be directly
resolved. As the result, lots of potential vulnerable paths still remain
unrevealed in the target binary. On the other hand, the frequent
occurrence of variable alias also prevents data flow analysis tech-
niques from finding implicit potential vulnerable paths. To mitigate
these challenges, state-of-the-art works [7, 30] utilize heuristic
methods to identify the mediate taint source as an alternative to
the original taint source, so that it can shorten the length of poten-
tial vulnerable paths from user input to sink point, which reduce
the probability of encountering indirect call and variable alias is-
sues. Unfortunately, these approaches sometimes misidentify the
mediate taint source in back-end binaries, which cause false posi-
tives of finding potential vulnerable paths. Meanwhile, indirect call
resolution is still not considered in these works due to associated
difficulties, so that many potential vulnerable paths are unrevealed,
which produces many false negatives.

Our solution. In this paper, we aim at completely, accurately re-
vealing potential vulnerable paths from taint source to taint sink
by solving the issues brought by indirect calls and implicit data
flow. Our insight is that accurate alias analysis can facilitate both
indirect call resolution and implicit data flow analysis during the
taint propagation. To this end, we propose a novel technique called
structured symbolic expression-based (SSE-based) on-demand alias
analysis. The technique overcomes the drawbacks of existing alias

\

Indirect call

diagCgiDnslookup(post_d *d) { ¢
char *emd = websGetVar(d, "host_name");
system("echo lookupname %s", cmd);)

}

361

analysis techniques (VSA-based or symbolic-execution-based ap-
proaches) from two aspects. First, our proposed technique designs
a new symbolic expression to represent alias information, which
improve accuracy of alias analysis compared with existing works.
Second, the technique only focuses on interesting variables (indirect
call targets and tainted variables) to perform on-demand analysis,
avoiding the holistic analysis of other irrelevant variables.

On the basis of SSE-based on-demand alias analysis, we pro-
pose EmTaint, which can effectively find taint-style vulnerabilities
in Linux-based embedded firmware. The design of EmTaint is as
follows. First, EmTaint extracts the target binary executable from
embedded firmware and builds the basic program representation
for further static analysis. Then, EmTaint performs SSE-based on-
demand alias analysis, which can help find the alias relationship
between the indirect call targets and function pointers. Based on
it, EmTaint designs both indirect call resolution and accurate taint
initialization and propagation scheme. Finally, EmTaint integrates
sanitization rule checking, and can find taint-style vulnerabilities
in Linux-based firmware both effectively and efficiently.

We have implemented the prototype of EmTaint with about
24,000 lines in Python. In EmTaint, the basic program representa-
tions are built by using IDA Pro [22], CLE [11], pyvex [29]. The
proposed SSE-based on-demand alias analysis and indirect call res-
olution are developed based on Claripy [10]. We evaluated EmTaint
with 35 real-world firmware samples. The result shows EmTaint
discovered at least 192 vulnerabilities, including 41 n-day vulnera-
bilities and 151 0-day vulnerabilities, which takes an average of 3
minutes on each sample. We have reported 151 0-day vulnerabili-
ties to the relevant manufacturers for responsible disclosure. 115
of vulnerabilities are confirmed by CVE/PSV at the time of writ-
ing. We also conducted a comparison with state-of-the-art works
KARONTE [30] and SaTC [7]. The results of the comparison shown
that EmTaint can find more vulnerabilities in less time. In addition,
we used EmTaint in the 2021 DataCon competition for the vulner-
ability detection of IoT firmware, and finally won the first place,
which demonstrates the efficiency of EmTaint in the real world.
Contributions. We make the following contributions:

e We proposed a novel alias analysis technique called SSE-based
on-demand alias analysis, to handle the challenge of effectively
revealing potential vulnerable path for taint analysis.

o We proposed EmTaint, a novel methodology for detection of taint-
style vulnerabilities in Linux-based embedded firmware. The
prototype was implemented with about 24,000 lines in Python.

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis

e We evaluated EmTaint with extensive experiments. The result
proves that EmTaint outperforms state-of-the-art works in de-
tection of taint-style vulnerabilities in Linux-based firmware.
Besides, EmTaint has discovered 151 0-day vulnerabilities (115
assigned with CVEs/PSVs) in 35 embedded firmware samples.

e We released the source code and experiment data of EmTaint at
https://sites.google.com/view/emtaint/home for future research.

2 BACKGROUND AND MOTIVATION
2.1 Taint-Style Vulnerability Detection

Given an embedded binary, the standard taint analysis procedure for
detecting taint-style vulnerability consists of four steps. (1) Recover
the inter-procedural control flow graph (ICFG) of the program. (2)
Identify attacker-controlled sources and security-sensitive sinks.
(3) Find a path where the taint is propagated from the source to
the sink. (4) Check the constraints of the tainted data at sinks. If
not constrained, an alert about the vulnerability is raised. An ideal
solution should achieve high accuracy in all these steps.

2.2 Motivating Example

However, how to effectively reveal the complete path from taint
source to sink (step 3) is a challenging problem. The main reason
is that the service program in embedded devices often register
callback functions to handle different kinds of user requests, which
prevent taint propagation from source to sink. Only the user request
is specified during the execution, the indirect call target can be
assigned with one of callback functions. That means, the indirect
call targets are still unknown when performing the static taint
analysis and thus the taint analysis would get stuck at these points.

Figure 1 shows an example of how indirect calls prevent taint
analysis techniques finding command injection vulnerability in
NETGEAR DGN2200 router. First, the back-end receives the re-
quest from the front-end, and obtains URL dnsloopup. cgi through
the getRegName function and stores it in variable name (line 10).
Then, the back-end searches the function pointer in the global func-
tion table that is registered to handle dnsloopup.cgi (line 12) and
finally calls function diagCgiDnslookup (line 13). The function
diagCgiDnslookup contains a command injection vulnerability:
the value of cmd comes from the user request (marked with red
color in the front-end) without any sanitization check. An attacker
can append additional commands to string ‘router’ to run arbitrary
commands on the device. However, in the static taint analysis, *fn
(line 13) is unknown, so that taint analysis cannot reach to the
system function and find this potential vulnerability.

Existing works, including SaTC [7] and KARONTE [30] use
heuristics to infer the mediate taint source as representative of user
input and thus shorten the distance from taint source to sink, which
reduce the complexity of taint analysis. However, they still have
limitations. First, the heuristics to identify the mediate taint source
still produce lots of false positives and false negatives. Specifically,
SaTC utilize shared interface keywords from both front-end web
files and back-end binaries to identify mediate taint source. How-
ever, the keywords of some user input do not exist in the front-end
web files. For example, in NETGEAR R7800 router with firmware
version V1.0.2.58, the keyword hidden_funjsq_username cannot be
found in the front-end web files, so that SaTC fails to identify it, but

362

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

the value of it can cause a command injection vulnerability. Sec-
ond, indirect calls issues still exist in shortened paths from mediate
taint sources to sinks, which are not considered in existing works,
leading to false negatives in revealing vulnerable paths.

2.3 Challenges and Key Idea

From the study of state-of-the-art works and the observation of the
motivating example, we summarize two challenges for detecting
taint-style vulnerabilities in Linux-based firmware. First, how to
find a complete path from real input source (e.g., recv function) to
the sink when indirect calls are involved on the path. Second, how
to detect vulnerabilities efficiently while the path is deeper.

To address the above two challenges, we propose SSE-based on-
demand alias analysis, which serves as a fundamental technique
for indirect call resolution and accurate and efficient taint analysis.
The SSE-based on-demand alias analysis can be explained from
two aspects. First, we design a new symbolic expression called
structured symbolic expression (SSE) inspired by access path [8].
However, access path targets source code, not the binary. SSE can
accurately describe nested memory-access variables (e.g., X.y.z)
to ensure the accuracy of alias analysis. Different from symbolic
expression used in symbolic execution, SSE encodes both arithmetic
operations and memory operations such as load and store. Thus,
any forms of alias for given variables can be expressed accurately by
means of SSE. Second, we perform on-demand analysis to ensure the
efficiency of alias analysis. That means, only interesting variables,
such as indirect call targets and tainted variables, need to be traced,
avoiding the time-consuming holistic analysis. Based on SSE-based
on-demand alias analysis, we take strategies to handle indirect
calls and fulfil the accurate taint propagation. After that, we can
reveal complete potential vulnerable paths from input sources to
security-sensitive sinks effectively.

3 METHODOLOGY

3.1 Overview

EmTaint takes an embedded firmware image as input and reports
potential taint-style vulnerabilities as output. As shown in Figure 2,
EmTaint consists of four major components.

Firmware Preprocessing. The firmware preprocessing module
decompresses and extracts binaries from firmware. Then, the mod-
ule converts the code of binary into intermediate representation
(IR). After that, it builds control flow graph (CFG) and a partial call
graph (CG) that facilitate subsequent analysis.

SSE-Based On-Demand Alias Analysis. The alias analysis engine
defines a new structured symbolic expression (SSE) to accurately
represent the alias information, and designs alias update mecha-
nisms to find aliases throughout the entire binary executable. To
achieve on-demand analysis, it only computes aliases related to the
variables of interest. This would avoid the overhead of calculating
aliases for a large number of unrelated variables, so that the analysis
can be applied to complex firmware binaries.

Indirect Call Resolution. Leveraging the data dependence infor-
mation provided by the proposed SSE-based alias analysis engine,
we further design an indirect call resolution algorithm that checks
the data dependence between the indirect callsites and referenced
function pointers (or function table pointers). The mechanism helps

https://sites.google.com/view/emtaint/home

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Firmware

Taint-style

1

1
1 .
1 Firmware Vulnerability Check :
1 Preprocessing - |
1 Vulnerability X
1 Check Module 1
1 t .
1 i
1 Taint Initialization | i
! e and Propagation | } !
: On-demand 1
1 Alias Analysis :
1 Indirect Call |
: Resolution 1

1

Figure 2: The overview of EmTaint

subsequent taint analysis cross more function boundaries, and im-
prove the discovery capability of taint-style vulnerabilities.
Taint-Style Vulnerability Check. The taint-style vulnerability
check module is responsible for identifying the potential taint-style
vulnerabilities. Specifically, it firstly taints the variables at taint
sources that are controlled by attackers (e.g., recv function). Then, it
captures taint propagation via the on-demand alias analysis module
and taint propagation operations. Finally, at security-sensitive sinks
(e.g., the system function), if the corresponding variable is tainted
and unconstrained, we mark it as a potential vulnerability. Since the
high-level idea of taint-style vulnerability detection is consistent
with [3, 7, 30], so we include the detailed process description in [37].

3.2 SSE-Based On-Demand Alias Analysis

In this section, we first start with the definition of structured sym-
bolic expressions (SSE). Then, we model the on-demand alias anal-
ysis problem with SSE. Based on it, we described how to perform
updates to SSE on each instruction.

Table 1: Recursive definition of SSE.

expr u= expr Qp expr | Quexpr | var
Op = + ok [, <>

Ou = ~, ...

var = Treg | Tmem | Toal

Treg = ri

Tyal = {Integer}

Tmem U= load(expr) | store(expr)

3.2.1 Definition of SSE. SSE is a new notation that uses abstract
memory model to represent aliases of a variable by encoding the
nested memory-access information at relevant program points. In
Table 1, we recursively define an SSE expression. Note that since our
implementation is based on VEX IR, our SSE definition is deeply
influenced by its design, in particular the basic statements and
memory model. An SSE could be any basic variable or the results
of a binary/unary arithmetic operation over basic variables. The
basic variable can be either a register (denoted as 7y¢g), a primitive
immediate value (denoted as 7,,;), or a memory access (denoted
as Tmem)- The memory access can be a value loaded from memory
(denoted as load(expr)) or a value stored to memory (denoted as
store(expr)). Here, the expr is a pointer.

An Intuitive Example. We use an intuitive example to explain
how we leverage SSE to find aliases for a given pointer. In the

363

Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

1 LDR R1, [R3,
2 LDR R2, [R3,
3 MOV Re, R1 er. .
4 STR R3, [R6, 0x4] «---—"""

1" Lload(R3+0x8) === =-=——--_____
3" R1 _ Pid

4" Load(store(R6+0x4)+0x8)“

Backward analysis — = Forward analysis

Figure 3: Example to illustrate SSE-based alias analysis

code snippet in Figure 3, there are four instructions. Our goal is
to find all aliases of R1 in line 3, which is known to be a pointer.
First, we initialize the alias set with R1 in line 3’. By looking back-
ward, we find a definition of R1 in line 1, which gets its value by
loading from memory R3+0x8. Therefore, by replacing R1 with
load(R3+0x8), we add load(R3+0x8) in line 1’ to the alias set.
Now, if we look forward from line 1, we find a usage of R3 in line 4.
That is, the value of R3 is stored in the memory R6+0@x4. Therefore,
by replacing R3 with store(R6+0x4) in load(R3+0x8), we add
load(store(R6+0x4)+0x8) in line 4’ to the alias set. By doing so
back and forth iteratively along the define-use and use-define chain,
we can eventually reach a fixed point of the alias set for the given
pointer. In particular, we only need to calculate aliases related to
variables of interest and avoid analyzing other extraneous variables
(e.g., the variable at line 2) to improve speed. The full SSE update
rules on each instruction and the algorithm for inter-procedural
analyses are explained in the following sections.

3.22 On-Demand Alias Analysis with SSE. Starting with the inter-
procedural CFG and a query (e.g., a pointer p), our on-demand alias
analysis algorithm involves two main aspects: (Aspect 1) how the
alias analysis of one particular function works; (Aspect 2) how the
termination of the analysis of one function triggers the analysis of
another function to get started.

Aspect 1 of our algorithm. We first define a graph called alias
analysis graph (AAG) to formally model the update and propagation
behavior of SSE-based analysis within a particular function.

DEFINITION 1 (AAG). AAG is a directed, attributed graph G (N, E,
S, Ftran, Btran, Fprop, Bprop), where N is a set of nodes {n1, na, ..., nj. }
with each node n; representing an instruction, E is a set of directed
edges representing the control flow transfer relation between nodes,
each node has four separate sets of SSEs serving as node attributes, and
S is the union of all the SSE sets on each node. Finally, Ftran and Btran
are the two sets of transfer functions that update the SSE sets on each
node during forward analysis and backward analysis, respectively.
Fprop and Bprop are the two sets of functions that propagate SSEs
along the direction and against the direction of each edge, respectively.

Since the alias analysis is performed in both forward and back-
ward directions, S in AAG records SSE information of each node
for both directions. The concrete definition is as follows.

e S,:For anode n, S, is consisted of four SSE sets: fin, fout, bin,
and bout. fin is only used in forward analysis, while bin is only
used in backward analysis.

e Ftrany: For a node n, it takes fin of node n and the instruction
on node n as inputs and updates two SSE sets fout and bout.

e Btrany: For a node n, it takes bin of node n and the instruction
on node n as inputs and updates two sets fout and bout.

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis

o Fpropp—sm: For an edge n — m, it propagates the SSEs held in
fout of node n to the fin set of node m.

® Bpropp—sm: For an edge n — m, it propagates the SSEs held in
bout of node m to the bin of node n.

DEFINITION 2 (AAG-Q). AAG-Q is an on-demand alias analysis
method based on AAG. Given the AAG of a particular function f and
a pointer p at node m as query, AAG-Q runs the following algorithm
to output p’s potential aliases on every node in the function’s AAG:

1) Initialize the fin set of node m as {p}.

2) Run a multi-iteration process until the following termination
condition is met: the fin sets and the bin sets on all nodes no longer
grow with an additional iteration. It should be noticed that a fixed
point will be reached when the termination condition is met.

3) Each iteration consists of two passes: the forward analysis
pass and the backward analysis pass.

4) During each iteration, the forward analysis pass works as
follows:

o First, each node is accessed through reverse-postorder traversal
on graph AAG of function f.

e When node n is visited, if it is neither a call site node nor the
function’s start/return node, perform the following operations:
fouty, bout, = Ftrany(fin,, n)
Fpropn—s: fing = fing U fouty,s € succy
Bpropr—n : biny = biny U bouty,r € predy,
where s € succ, denotes that s is a successor node of n in the
graph AAG, and r € pred, denotes that r is a predecessor node
of n.
In case the current node is a call-site node, the modifications
and references summary of the callee function will be firstly
calculated using the technique proposed in [8]. Then a special
transfer function will take the calculated summary and fin of
the call-site node as inputs and updates two sets fout and bout
of the call-site node. After the updating is completed, the SSEs in
fout and bout are propagated with Fprop and Bprop described
in aforementioned operations.

In case the current node is a start node, it performs the aforemen-

tioned operations except for Bprop.

o In case the current node is a return node, it performs the afore-
mentioned operations, except that function Fprop is implemented
as follows:

Fpropn—s: fins = fins U Choose(foutn), s € retsites,
where Choose() operation selects the SSEs related to the return
register (e.g., RO in ARM) of the function f and the SSEs related
to global pointers, and s € retsitesy denotes that s is a return-site
node from function f to caller.

5) During each iteration, the backward analysis pass works as
follows:

o First, each node is accessed through postorder traversal on graph
AAG of function f.

e When node n is visited, if it is neither a call-site node nor the
function’s start/return node, perform the following operations:
fouty, bout, = Btrany (binp, n)

Fpropn—s: fins = fing U fouty,s € succ,
Bpropr—pn : bin, = bin, U bouty,r € pred,

364

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

e In case the current node is a call-site node, the modifications
and references summary of the callee function will be firstly
calculated using the technique proposed in [8]. Then a special
transfer function will take the calculated summary and bin of the
call-site node as inputs and updates two sets fout and bout of the
call-site node. After the updating is completed and the SSEs in
fout and bout are propagated with Fprop and Bprop described
in aforementioned operations.

In case the current node is a start node, it performs the aforemen-
tioned operations, except that function Bprop is implemented as
follows:

¢ € callsitesy
p € pred.
where Choose() operation selects the SSEs related to the argu-
ment registers (e.g., R0 in ARM) of the function f and the SSEs
related to global pointers, ¢ € callsitesy denotes that c is a call-
site node for calling function f.

e In case the current node is a return node, it performs the afore-
mentioned operations except for Fprop.

Bprope—n @ biny, = biny U Choose(boutn),{

Note: the update rules with function summary is explained in
detail in [37].

Aspect 2 of our algorithm. Our algorithm conducts inter-
procedural on-demand alias analysis, but this does not mean that
our algorithm will actively work on every function (in the target
program) all the time. In fact, many functions will stay “dormant”
until being triggered, and the alias analysis of a function will be
triggered when any of the following conditions is met. (a) The
query will automatically trigger the alias analysis of the function
which uses pointer p. The function is the first one which will be
analyzed by our algorithm. At this moment, all the other functions
are actually “dormant”. (b) When the alias analysis of a function
A terminates, if A has a caller function, the analysis of the caller
function will be triggered. When condition (a) is met, Aspect 1
of our algorithm describes all the operations performed by our
algorithm. However, when condition (b) is met, our algorithm does
the following beyond Aspect 1. First, it checks whether the fin set
of the return-site node and the bin set of the predecessor node of the
call-site node in the caller function’s AAG-Q have changed. Then,
if it changes, the caller function is analyzed as Aspect 1. Otherwise,
the caller function goes back to “dormant”.

3.2.3 Updating Rule within Transfer Function. In the above section,
we introduce the iterative algorithm of inter-procedural on-demand
alias analysis, which involves the transfer functions (Ftran and
Btran) that update the SSE sets on each normal node, In this sec-
tion, we illustrate the corresponding update rules in detail. At each
normal node, the rules of Ftran, and Btran, is shown in Table 2.
(1) Update rules of Ftran. The rules of Ftran are listed in
entries 1-7 in Table 2. In the table, each rule is represented as

rn . . .
statement — expr.replace(rn,rj). Given the instruction of node,
c

and the tracking SSE expr from fin of node, we first find the
matched rule where statement can represent the instruction. After
finding the exact rule, we then check if c is true and rn exists in
expr. If satisfied, new SSE should be generated where rn is replaced
with rj. Note that this process should be conducted over all the live
variables in the current SSE. To explain the rules of Ftran more
clearly, we give an example here. The given instruction is d = v,

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

Table 2: Update rules for structured symbolic expressions

SSE update with define-use chain

(Dri=rj SEN expr.replace (rj,ri)

(3)ri = ITE (rj,rn,rm) RALN expr.replace (rn, ri)§
load(rj
(5)ri = Load (rj) -4,

(7)ri = Load (r}j) M

expr.replace (load (rj),ri)

expr.replace (store (rj), ri)

rnQprm

(2)ri = Binop (rn,rm) ———— expr.replace (rnQprm, ri)

(4)ri = ITE (rj,rn,rm) RALN expr.replace (rm, ri)¥

(6)Store (ri) =rj 2> expr.replace (rj, store (ri))

SSE update following use-define chain

B)yri=rj LA expr.replace (ri,rj)
(10)ri = ITE (rj,rn,rm) RAN expr.replace (ri, rn)’
(12)ri = Load (rj) RAN expr.replace (ri,load (rj))

(9)ri = Binop (rn,rm) o, expr.replace (ri,rnQptm)

(11)ri = ITE (rj,rn,rm) RAN expr.replace (ri, rm)’

. load(ri

(13)Store (ri) =rj % expr.replace (load (ri),rj)

SSE kills

(14)ri=rj I, expr.kill ()
p

(15)Store (ri) =rj

store(ri) or load(ri)
PR e AN

expr.kill()

§: The statement ri = ITE(rj, rn,rm) denotes that if r j is true, ri = rn, otherwise, ri = rm. We ignore conditional judgments in the update rules.

*: Existing load (ri) in expr occurs after the newly encountered store(ri) statement.

+: Existing store(ri)/load(ri) in expr occurs before the newly encountered store(ri) statement.

and the current SSE is v + 0. Thus, we identify the rule 1 in Table 2
as the matched one and a new SSE d + o is generated by replacing
the variable v in the original SSE with the variable d. The new SSE
generated by rules 1-7 is saved to set fout of node. In particular,
the new SSE generated by rule 6 is also saved in set bout of node
and used to find aliases of address ri in backward iterative analysis.

(2) Update rules of Btran. The rules of Btran are listed in
entries 1-6 (except for entry 7) and 8-13 in Table 2. Similarly, each

. rn N e
rule is represented as statement — expr.replace(rn,rj). Given
c

the instruction of the node, and the tracking SSE expr from bin
of the node, we first find the matched rule where statement can
represent the instruction. After finding the exact rule, we then
check if ¢ is true and rn exists in expr. If satisfied, new SSE should
be generated where rn is replaced with rj. We also give an example
here. The given instruction is v = u and the current SSE is load(v).
Thus, we identify the rule 8 in Table 2 as the matched one, and a
new SSE load(u) is generated by replacing the variable v in the
original SSE with the variable u.

Unlike Ftran, which only checks whether the use variable (en-
tries 1-7 in Table 2) exists in the tracking SSE expr, Btran needs to
check use (entries 1-6 in Table 2) and definition variable (entries
8-13 in Table 2), both of which generate aliasing relationships. It is
worth noting that in backward analysis, the new SSE updated by
entries 1-5 is saved in set fout of node, that is, it can only propagate
forward, and the new SSE updated by entries 6 and 8-13 is saved in
both set fout and bout of node, that is, it can propagate forward as
well as backward.

(3) Conditions for terminating an SSE. Each variable has its
own live scope. If a register assignment statement is encountered
during forward or backward analysis, the liveness of the corre-
sponding register (i.e., Treg) is killed and the entire SSE associated
with this register is terminated. This corresponds to rule 14 in
Table 2. Similarly, if a store statement is encountered during for-
ward analysis, the liveness of the corresponding memory access
(i.e., Tmem) is killed and the entire SSE associated with this variable
is terminated. This corresponds to rule 15 in Table 2.

365

3.24 Handling Data-Flow Cycles and Recursive Data Structure. The
SSE describing memory access variables is a storeless mode [8]
and represents an unbounded value domain, which may cause
our algorithm to fail to reach a fixed point. To solve this problem,
EmTaint utilizes k-limiting [16] method to limit the length of SSE,
where k is set to 5. With k-limiting, the input sets fin and bin of our
algorithm guarantee convergence and our algorithm guarantees to
reach a fixed point. In addition to the k-limiting method, EmTaint
also uses access-path abstraction to abstract data-flow cycles and
recursive data structure.

™ Lloc_30560 > Lloc_30620

1 LDR R1, [R3, 0x4] 5 ADDS R3, #0xC

2 MOV R3, R1 | 6 CMP R2, #0

L.3 BNE Loc_30560 L7 BNE Loc_30620

4 LDR RO, [R3] 8 LDR RO, [R3,#0x8]

(@) (b)
™ loc_30710 foo(Ro):
{9 MOV Re, R5 12 LDR R1, [R@]
{ 10 BL foo 13 ADD R1, #ox1

L-11 BE loc_30710

14 STR R1, [RO]
(©

Figure 4: Examples that cause SSE to be infinitely long

We summarize three cases that lead to infinite SSE in our on-
demand alias analysis. (1) The access of a recursive data structure
in a loop. For example, in Figure 4(a), register R3 points to a recur-
sive data structure. Querying the pointer R3 will obtain the aliases
SSEs as load(R3+0x4), load(load(R3+0x4)+0x4) and so on. (2)
The access of incremented pointer in a loop, where the pointer
value is incremented directly each loop iteration (e.g., register R3 in
Figure 4(b) is incremented by 0xC in each iteration). (3) The access
of incremented pointer in a loop, the pointer value is incremented
indirectly by calling a function. For example, foo in Figure 4(c)
is called through a loop, where the callee foo increases the value
pointed to by the pointer parameter R0 by 0x1 in each loop iteration.
These three cases have the same feature: cyclic data dependence
that exists in backward iterative update.

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis

To this end, we take steps to prevent the generation of infinite
SSEs in these three cases. For the case (1), when an alias SSE is
updated in the same load instruction twice in backward analysis, we
abstract the SSE as recursive expression Rload(base + of f), which
represents load(base + of f), load(load(base + of f) + of f) and so
on. For the case (2) and case (3), when an alias SSE is updated in the
same add instruction like ‘ADD R3, cons’ (or function summary
like store(RO) = load(RO) + cons) twice in backward analysis, we
abstract the SSE as increasing expression base + i * cons, where i
represents the number of iterations of the loop and cons represents
the constant increase in the value of pointer base each iteration.

3.25 Termination, Completeness, Soundness, and Complexity. The
proposed on-demand alias analysis AAG-Q is inspired by access-
path [8] and k-limiting approaches [16], which help bound the
length of SSE. The main difference is that existing approaches only
iteratively track unidirectional data dependencies but we perform
bidirectional data dependencies, obtaining the forward analysis
output fout and the backward output bout, respectively. Therefore,
the termination condition of our algorithm is similar to that of
standard data-flow analysis with access-path and k-limiting. In
particular, our algorithm guarantees to reach a fixed point.

Based on Meyer’s article about completeness and soundness [5],
we unambiguously define completeness and soundness in the set-
ting of alias analysis as follows. AAG-Q is sound if AAG-Q says
p1 and p2 are aliases, then p1 and p2 are indeed aliases. AAG-Q
is complete if p1 and p2 are aliases, then AAG-Q will say p1 and
p2 are aliases. Under this definition, AAG-Q is unsound because
k-limiting is adopted. Specifically, by bounding the length of SSEs,
AAG-Q may wrongly report aliases which are not. Based on our
evaluation, among 166 reported aliases, 158 were true positives (see
Section 4.2). In addition, AAG-Q may miss aliases when 1) the dis-
sembler makes mistakes, or 2) the algorithm reaches 15 iterations
for a function. Therefore, our analysis is incomplete. The first factor
is unavoidable due to the fundamental problem with any binary
analysis method. That is, disambiguating between references and
literal values in a binary is undecidable in general [39]. The second
factor is imposed by ourselves due to performance considerations.
Specifically, to strike the balance between soundness and efficiency,
we made a compromise by limiting the number of iterations to 15
for each function in our on-demand alias analysis within a function
(Section 3.2.2). During our evaluation, we found that the execution
time could become unacceptable for some complex programs (e.g.,
with too many branches inside a loop). The number 15 was chosen
mainly based on our empirical study which shows that increasing
the number of iterations over 15 did not result in a better result in
resolving indirect calls and discovering vulnerabilities. Even with
this limit, we successfully found 158 aliases among 166 confirmed
aliases (see Section 4.2). Since this is a tunable parameter, analysts
can always select one that works best for the target program based
on the time budget and the soundness requirement.

The complexity of our algorithm can be measured with the fol-
lowing parameters: N which denotes the total number of nodes
in graph AAG of all functions, V¢ which denotes the number of
variables in a single function, F which denotes the total number of
fields in all structures, and k which denotes the value of k-limiting.

The worst-case complexity can be expressed as O(|N]| |Vf|2 |2k

366

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

for both time and space. The complexity of our algorithm is consis-
tent with inter-procedural pointer analysis [8], which is considered
acceptable in practice.

{ 4
Backward i Clexpr H
/727] e
H load(ptr) load(load(ptr)) |}
\ ;o
T
; ' - targets
1 { 3
. ! H
Jptr dptr :_ Backward__ i
& Forward
'

H
H
H
;

Match Update

Pexpr

store(ptr)] [store(ptr)]

Figure 5: Overview of indirect call resolution.

3.3 Indirect Call Resolution

EmTaint resolves indirect calls based on dependencies between the
aliases of indirect call targets and the aliases of function pointer
references (or function table pointers). First, EmTaint identifies all
the indirect call instructions by traversing through the disassem-
bled code. EmTaint treats all branch instructions with a register as
indirect calls (e.g., b1x r@in ARM and jalr $t9in MIPS). EmTaint
then uses IDA Pro to filter call instructions whose targets can be
recognized. The remaining ones were treated as unresolved indirect
calls. Since almost all the call instructions in MIPS use a register
as operand, MIPS programs have a considerably larger number of
indirect calls than ARM programs (see Table 6).

Second, EmTaint finds all address-taken functions by scanning
both the code segment and data segment, and locates all the ref-
erences to the address-taken functions. Here the address-taken
functions stand for functions that have function pointers referring
to them. There are mainly two ways to reference a function. A
function pointer which contains the address of the function, can be
used directly as an operand in an indirect call. We denote this kind
of references as fptr and show an example in line 2 of Listing 1. A
function table pointer which contains the address to a function table,
can be used indirectly (i.e., by dereferencing the function table first)
to get the real function address. We denote this kind of references
as dptr and show an example in line 7. In this example, an entry in
the table has two fields - a string pointer to the index name and the
actual function pointer. For the target of indirect call, we denote it
as tptr and show an example in line 5 and 13.

1 void (xfun_ptr)() = //address-taken function

2 fptr = fun_ptr;

3 x.y.z = fptr;

4 fpl = x.y.z;

5 call fp1; //indirect call

&fun;

7 dptr = 0x92C44;
s while (strecmp(xdptr,
9 dptr += 0x8;

//function table address

name)){

1y
12 fp2 = x(dptr+0x4);
15 call fp2; //indirect call

Listing 1: Indirect call resolution example.

Finally, EmTaint performs SSE-based alias analysis and find de-
pendence between indirect call targets tprt and the original ref-
erences fptr/dptr. Figure 5 illustrates the process of indirect call
resolution. EmTaint back tracks the tprt to find its all aliases. Mean-
while, EmTaint finds the aliases of fptr and dptr through both

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

Table 3: Alerts produced by EmTaint for 35 samples

Vendor ID Firmware Version Arch Binary Size (KB) Ana.Func Tainted Sinks Alerts Time (s)
Cisco (2) 1 RV320_v1.4.2.20 MIPS64 ssi.cgi 1,820 1,567 1450 335 634.64
2 RV130_v1.0.3.44 ARM32 httpd 612 796 402 150 60.96
D-Link (7) 3 DIR-825_B_2.10 MIPS32 httpd 531 447 198 36 95.02
4 DAP-1860_A1_B03 MIPS32 uhttpd 1,129 1,030 106 12 97.02
10 TEW632BRP_1.010B32 MIPS32 httpd 314 315 149 26 40.08
TRENDnet (2) 11 TEWS827DRU_2.04B03 MIPS32 ssi 998 622 289 142 58.20
12 R7800_v1.0.2.32 ARM32 net-cgi 542 1,286 291 119 88.91
NETGEAR (17) 13 R8000_v1.0.4.4 ARM32 httpd 1,508 1,088 428 36 167.48
TP-Link (3) 29 WR940NV4_us.3.16.9 MIPS32 httpd 1,691 3,481 225 31 343.16
Tenda (4) 32 AC9V3.0_v15.03.06.42 MIPS32 httpd 2,039 1,201 172 84 433.62
Total (35)° - - - - 38,983 9,346 1,887 179.817

§: The row labelled “Total” shows aggregated results for 35 samples. Due to page limit, we only list 10 representative samples in the table. The other 25 samples can be found in Table 4 in [37].

+: The average execution time per sample.

forward and backward analyses. Then, EmTaint collects all the alias
SSEs in the entry block and exit block of every function, checks
the data dependency between aliases of fptr/dptr and aliases of
tprt, and matches and updates them. We denote the alias SSEs of
the tprt as CTexpr (call target expression), and the alias SSEs of
the fptr or dptr as Pexpr (pointer expression). Next, we explain
how to analyze CTexpr and Pexpr and infer indirect call targets
associated with function table.

In the simplest form, a CTexpr and a Pexpr match directly. Em-
Taint can calculate the call target directly from CTexpr. This often
indicates an indirect call referenced by fptr. If the CTexpr can be
represented by load(dptr+i=stride), where the dptr is the address
of a function table, the stride is a constant, and i is an index, it
strongly indicates a function table reference. In this case, EmTaint
attempts to read values from addresses dptr + i * stride, where the
index i starts at 0 and increases by 1 at a time. It terminates when
the retrieved value is greater than the maximum address of the
function table. If the returned value is a legitimate function address,
EmTaint adds it to the set of indirect call targets.

For the indirect call targets that cannot be accurately traced to a
specific fptr or dptr, we indirectly find their dependencies. Our ob-
servation is that fptr and dptr are often stored in a multi-level data
structure whose root pointer is a global pointer (denoted as gptr).
Therefore, we often find store(gptr) in Pexpr. To indirectly call the
target, the program also needs to refer to the same global pointer
before the callsites. If the CTexpr can be simplified to load(gptr),
where the same gptr is used in the Pexpr, the indirect call target is
immediately recovered by using fptr. If the CTexpr can be simpli-
fied to load(load(gptr) + i * stride), where the same gptr is used
in Pexpr, by replacing load(gptr) in CTexpr with dptr (since dptr
has an alias SSE load(gptr)), a new SSE load(dptr + i = stride) can
be generated. Then, EmTaint resolves the indirect call targets using
load(dptr + i = stride).

4 IMPLEMENTATION AND EVALUATION

EmTaint is implemented with about 24,000 lines in Python (not
including the open source code), and the implementation details can
be found in [37]. In the evaluation, we aim to answer the following
four questions. (1) How effective is it in uncovering real-world
taint-style vulnerabilities in embedded firmware (§4.1)? (2) How

367

Table 4: True positive evaluation by random sampling

ID Model Alerts # of Samples # of TP
1 Cisco RV320 335 34 32
2 Cisco RV130 150 15 15
3 D-Link DIR-825 36 4 3
4 D-Link DAP-1860 12 2 2
10 TRENDnet TEW632BRP 26 3 2
11 TRENDnet TEW827DRU 142 14 7
12 NETGEAR R7800 119 12 10
13 NETGEAR R8000 36 4 4
29 TP-Link WR940NV4 31 4 4
32 Tenda AC9 84 8 7
Total 10 971 100 86

accurate is the SSE-based on-demand alias analysis algorithm(§4.2)?
(3) How effective is it in indirect call resolution with the support
of SSE-based alias analysis? To what extent does the indirect call
resolution play a role in improving vulnerability discovery (§4.3)?
(4) How effective is it compared with the state-of-the-art techniques
(§4.4)?

Experiment Setup. Our evaluation dataset consists of 35 differ-
ent firmware samples from six major emebedded system vendors:
Cisco, D-Link, NETGEAR, TRENDnet, TP-Link and Tenda. The
majority of the firmware samples (31 samples) are selected from the
dataset of the baseline KARONTE [30]. The remaining four samples
are manually downloaded from the official websites of Cisco and
TRENDnet. The summarized information is listed in Table 3, where
Size denotes the size of the binary file we test (e.g., httpd). We can
see from Table 3 that samples covers three architectures including
ARM32, MIPS32 and MIPS64, which are the mainstream architec-
tures used in Linux-based embedded devices. All the experiments
were conducted on a Ubuntu 18.04.4 LTS OS running on PC with a
8-core Intel Core 17-8550U CPU and 24 GB RAM.

4.1 Vulnerability Discovery

Table 3 shows the results that EmTaint has found 9,346 different
sinks where tainted data can reach to them. 1,887 of them were
identified as alerts because no security sanitization was detected.
The analysis time for each sample is about 180 seconds on average.
True Positive Evaluation. Given a large amount of raised alerts
produced by EmTaint, it is important to study how many of them in-
dicate true positive. However, the overall evaluation of true-positive

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis

Table 5: Comparison with VSA on the same dataset

Dataset MAY- NO- VSA EmTaint

ALIAS ALIAS TP TN TPR ACC TP TN TPR ACC
basic 67 27 46 26 68.7% 76.6% 61 27 91.0% 93.6.0%
flow 26 29 21 29 80.8% 90.9% 26 29 100.0% 100.0%
context 73 43 49 43 67.1% 793% 71 35 97.3% 91.4%
Total 166 99 116 98 69.9% 80.8% 158 91 95.2% 94.0%

is labor intensive, because it requires reverse-engineering and man-
ual construction of a proof-of-concept (PoC) on real devices to
validate whether they are real bugs or not. Therefore, we randomly
selected a part of samples to estimate true positive rate. Specifi-
cally, we selected 10 physical devices and randomly sample 100
alerts out of 971 from these devices. Then, we identify an alert that
refers to a true positive if (1) it matches a known vulnerability or
(2) can be verified by successfully crafting a PoC on the real device.
Table 4 shows that 86 out of 100 alerts refer to true positive, in
which 13 true positives verified by known vulnerabilities and oth-
ers verified via successfully constructed PoCs. This proves the high
true positive rate of EmTaint. For the rest of false-positive alerts,
we attribute them to inaccurate indirect call resolution, failures of
finding security checks, fake alias relationship and taint sources.
N-day and 0-day Vulnerabilities. In addition to verifying alerts
through sampling as mentioned before, we have been working hard
to verify more alerts. We prioritize alerts related to real devices
that we have access to. To confirm 0-day vulnerabilities, we tried
to craft PoCs against the latest firmware versions of real devices.
The rule of identifying a vulnerability from multiple alerts is as
follows: alerts triggered by parameters from POST request of the
same URL interface at different sinks should be identified as one
vulnerability. The rule is inspired by our observation of n-day vul-
nerabilities found by EmTaint. Specifically, we identify 41 n-day
vulnerabilities by searching records from exploit-db [18] or MITRE
CVE [13], which correspond to 120 alerts. Table 3 in [37] list the
distribution of 41 n-day vulnerabilities among the public exposure
IDs. Note that one CVE ID may correspond to multiple alerts. For
example, CVE-2019-13278 refers to a unique command injection
vulnerability, which can be triggered at 33 different sinks in the
target binary. Finally, we have confirmed a total of 151 0-day vul-
nerabilities from 512 alerts. We reported the 151 vulnerabilities to
manufacturers, all of which have been fixed. The discovered 0-day
vulnerability include 38 command injection vulnerabilities and 113
buffer overflow vulnerabilities, 115 of which have been assigned
with CVE/PSV numbers. The vulnerability information including
relevant CVEs/PSVs is summarized in Table 5 in [37]. Since some
samples from our dataset are in older version, lots of alerts gen-
erated by EmTaint have been fixed in the latest version. We infer
that these vulnerabilities were found by the vendor themselves, and
no public detail is available. For example, EmTaint produced 119
alerts in NETGEAR R7800 v1.0.2.32, but we only verified one 0-day
vulnerability in its latest version v1.0.2.68. By reverse-engineering
both samples, we found that many vulnerabilities were fixed by
replacing strcpy with strncpy.

In summary, EmTaint has found 151 0-day vulnerabilities
(115 CVE/PSV) and 41 n-day vulnerabilities on our evaluation
dataset. Meanwhile, EmTaint can find vulnerabilities with
high true-positive (86%).

368

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

4.2 Effectiveness of SSE-Based Alias Analysis

To evaluate the effectiveness of SSE-based alias analysis, we select
VSA [4], the most advanced alias analysis technique for binaries as
the baseline. The selected test dataset, PTABEN [28], is a benchmark
used in SUPA [36], which is the state-of-the-art demand-driven alias
analysis technique for source code. We choose three test sets of C
program from PTABEN, including basic test set, context-sensitive
test set and flow-sensitive test set. The three test sets we selected
covered all types of pointers. The rest of test sets are written in
other languages that are not relevant to the scope of our analysis.
We use Angr v9.0.5811 [2], which implemented VSA, to carry out
the comparison experiment.

Table 5 shown the results. The MAYALIAS(*p, *q) indicates that
pointers p and q are aliases, and the NOALIAS(*p, *q) indicates
that pointers p and q are not aliases. For 166 MAYALIAS and 99
NOALIAS, our technique correctly identified 249 (the accuracy is
94.0%), while Angr-VSA correctly identified 214 cases (the accuracy
is 80.8%). In particular, the positive rate of our technique (95.2%)
is much higher than that of Angr-VSA (69.9%). Eight MAYALIAS
were not correctly identified by our technique for two reasons.
First, some fields of complex structure array variables that allocated
in the stack cannot be accurately recovered by SSE. Second, our
algorithm tracks variables forward and backward on demand, and
the lack of contexts from caller function results in missing updates
to the store definition. The low accuracy of Angr-VSA is because
many variables are unconstrained symbolic values, and Angr-VSA
cannot calculate their concrete values. However, EmTaint can find
the alias relationship of symbolic values with SSE.

In summary, our proposed SSE-based alias analysis has both
higher accuracy (94.0%) and true positives (95.2%) in alias
analysis compared to VSA (80.8%, 69.9%) in PTABEN dataset.

4.3 Indirect Call Resolution with Alias Analysis

In this section, we evaluate the effectiveness and efficiency of indi-
rect call resolution, and also evaluate the effectiveness and necessity
of indirect call resolution in discovering taint-style vulnerabilities.
Note that, the indirect call resolution procedure is armed with SSE-
based alias analysis, Thus, we take SSE-based alias analysis and
indirect call resolution as a whole for the evaluation.
Effectiveness and Efficiency. Table 6 shows the results of indirect
call resolution on our evaluation dataset from Table 3. In Table 6,
A1LI-CALLs denotes the total number of unresolved indirect callsite
in IDA pro. REsoLVED I-CALLs denotes the the number of indirect
callsites that can be resolved by EmTaint. The result shows that Em-
Taint can resolve 96.6% indirect callsites (12,022 out of 12,446) and
the average analysis time per sample is about 96 seconds, which
proves both effectiveness and high efficiency of indirection call
resolution module in EmTaint. In addition, we calculated the to-
tal number of target functions called at indirect callsites during
this process as shown in the column I-CALL TARGETS. In total, our
EmTaint added 14,920 target functions that are called indirectly,
which substantially improved taint-style vulnerability discovery.
Since we do not have the ground truth for indirect call targets, we
cannot accurately evaluate the failure cases. However, by reverse-
engineering some samples, we did find some missed targets because
some address-taken functions were not recognized.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Table 6: Results of indirect call resolution

All Resolved
I-Calls I-Calls

638 620

1-Call
targets

794
475
239
327
182
381
692
491
653
286
14,920

% of resolved
I-Calls

97.2%
82.4%
97.5%
77.8%
95.3%
94.1%
82.3%
66.6%
79.4%
73.9%
96.6%

Model Time (s)

1 Cisco RV320

2 Cisco RV130

3 D-Link DIR-825

4 D-Link DAP-1860
TRENDnet TEW632BRP
TRENDnet TEW827RU
NETGEAR R7800
NETGEAR R8000 3 2
TP-Link WR940NV4
Tenda AC9V3.0

288.04
27.83
33.44
37.15
20.40
25.56
40.27
40.35

409.10

204.55

95.55"

88
12,446

Total (35)% 12,022

§: The row labelled “Total” shows aggregated results for 35 samples. Due to page limit, we only list
10 representative samples in the table. The other 25 samples can be found in Table 6 in [37]. §:
The average execution time per sample.

Effectiveness in Finding Vulnerabilities. To evaluate the effec-
tiveness of indirect call resolution in finding vulnerabilities, we
conduct the comparison with and without indirect call resolution
on our dataset. Due to page limit, we show the results of 10 rep-
resentative samples with real devices in Table 7 in [37]. Here we
use four metrics to demonstrate the effectiveness: the number of
covered basic blocks, tainted basic blocks, tainted sinks, and gener-
ated alerts. We can see that the first three metrics has increased a
lot by applying indirect call resolution. That means that indirect
call resolution enables EmTaint to propagate the tainted data to
more functions and variables, and arrive more unsafe sinks. Fur-
thermore, EmTaint with indirect call resolution can find 763 more
alerts, which correspond to 131 real vulnerabilities. We also study
the effectiveness of indirect call resolution on different samples.
The results show that EmTaint can help generate a number of new
alerts in most cases. A special case named TEW827RU does not
show improvement on alerts when applying indirect call resolution
to it. The reason is that the propagation of tainted data from source
to sink does not involve any indirect calls in this sample.
Necessity in Finding Vulnerabilities. To evaluate necessity of
indirect call resolution, we manually analyzed the 162 real vulnera-
bilities (11 n-day and 151 0-day) in the 10 samples. Among them,
the triggering path of 131 vulnerabilities involves indirect calls,
which prove the necessity of applying indirect call resolution to
find vulnerabilities in Linux-based embedded firmware.

In summary, EmTaint can resolve the indirect call both effec-
tively (96.6% success rate) and efficiently (96s for each sample
on average) on dataset. Moreover, we also demonstrate the ef-
fectiveness and necessity of indirect call resolution for finding
vulnerabilities in Linux-based embedded firmware.

4.4 Comparison with KARONTE and SaTC

Three works are closely related to ours, including CodeSonar [20],
KARONTE [30] and SaTC [7]. However, CodeSonar is a commer-
cial product of GrammaTech and we were unable to use it in our
evaluation. KARONTE and SaTC are both open-sourced and they
perform taint analysis to detect the taint-style vulnerability in em-
bedded firmware. Due to the very similar scope, we reused the
dataset [23, 32] released by KARONTE [30] and SaTC [7], which
includes 49 firmware samples from 4 embedded vendors (i.e., NET-
GEAR, D-Link, TP-Link and Tenda). These datasets describe the
number of alerts and the number of true positives.

369

Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

Table 7 shows the results. To be fair, we adopt the same definition
of true positive in KARONTE (cf: §X.D in [30]). Specifically, an
alert is a true positive if the tainted data that reaches the sink is
provided by the user. This applies to SaTC too. KARONTE took
approximately 451 hours to produce 74 alerts, among which 46 were
true positives; SaTC took approximately 459 hours to produce 2,084
alerts, among which 683 were true positives; EmTaint reported 1,583
alerts in less than 4 hours, 1,518 of which were true positives. The
result shows that EmTaint can find more true positives in less time
than KARONTE and SaTC. It is worth noting that our performance
improvement to theirs is in orders of magnitude (3+ hours vs 400+
hours). Moreover, our tool found 22 0-day vulnerabilities in the
already extensively tested samples.

Apart from the lack of indirect call resolution and less accurate
alias analysis, we found that KARONTE and SaTC frequently raise
false alerts because of the incorrectly specified taint sources. Specif-
ically, due to the path explosion problem of symbolic execution,
they cannot directly use the common taint sources such as recv
function. Instead, to shorten the path from the sources to sinks,
KARONTE infers the taint source by using a preset list of network-
encoding strings (e.g., “soap” or “HTTP”), and SaTC infers the taint
sources by the keywords shared between the front-end files and
the back-end programs. When these keywords are unrelated to
user inputs, false positives occur. In contrast, EmTaint starts taint
analysis directly from real sources (e.g., recv function), which helps
us achieve much higher true positive rates.

In summary, EmTaint can produce true alerts with higher
accuracy (96%) in less time (less than 4 hour) compared with
KARONTE (62%, 451 hours) and SaTC (33%, 459 hours) on
the same dataset. Moreover, EmTaint can find 22 more 0-day
vulnerabilities compared with them.

5 DISCUSSION

Comparison with Existing Work. First, we compared SSE to
existing work that use access path to implement field-sensitive
analyses [3, 8, 34]. All these related work are for source code, not
binary program. In the source code, all variables and fields have
clear symbolic names, making it ideal for representing a memory
access through a local variable followed by a sequence of field
accesses (e.g., x.y.z). However, binary programs lose symbol names,
data types, and data structure information of variables, which makes
it difficult to use access path directly in binary analysis. For example,
for the ARM instructions "ADD R2, R@, 0x20; ADD R3, RO, 0x48",
register R2 and R3 cannot be represented with access-path because
it is unknown whether they are pointer or integer. Moreover, it is
difficult to identify R2+0x28 and R3 as aliases by access-path. To
address this issue, we propose SSE. In addition to describing an
indirect memory access like access-path, SSE is also used to recovery
data types (pointer or non-pointer), calculate offset patterns of base
pointer (e.g., identify load (R2+0x28) and load(R3) as aliases), and
abstract recursive data structure and pointer increment structure
in the loop (Section 3.2.4). Second, we compared our on-demand
alias analyses to existing work [36, 42], which also use demand- or
client-driven analyses to improve efficiency. These work compute
points-to queries on-demand, which aim to find all objects to which
the pointer points. However, our algorithm focuses on finding the

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Table 7: Comparison with KARONTE and SaTC on the same dataset.

Vendor Samples KARONTE [30] SaTC [7] EmTaint

Alerts # of KTP KTP Rate Time Alerts #of KTP KTP Rate Time Alerts #of KTP KTP Rate Time
NETGEAR 17 36 23 63.9% 17:13 1,901 537 28.2% 16:47 849 849 100.0% 00:05
D-Link 9 24 15 62.5% 14:09 32 22 68.8% 01:57 299 234 78.3% 00:02
TP-Link 16 2 2 100.0% 01:30 7 2 28.6% 04:13 73 73 100.0% 00:05
Tenda 7 12 6 50.0% 01:01 144 122 84.7% 12:19 362 362 100.0% 00:05
Total 49 74 46 62.2% 451:06 2,084 683 32.8% 459:33 1,583 1,518 95.9% 03:38

For each tool, we report the total number of generated alerts, the number of true positives based on the definition in KARONTE (# of KTP), the true-positive rate (KTP Rate), and the average analysis time for each
sample (hh:mm). In the row labelled “Total”, we show the aggregated time to analyze all 49 samples in the column “Time”.

alias of the pointer itself on-demand, and does not focus on the
pointer’s target, which is more suitable for taint analysis.

Limitations. First, although SSE-based alias analysis outperforms
existing alias techniques in binary level, it still falls short when the
pointer involves bitwise operations or the offset of the memory ac-
cess is not a constant. We will improve SSE to handle this situation
in the future work. Second, for vulnerability detection, EmTaint
generates 14% false positives. The reason is manifold. (1) EmTaint
misses some constraint checks that exist in customized library func-
tions. Specifically, our approach collects constraint checks in the
target program itself and standard library function, but misses se-
curity checks that do occur in library functions without summaries.
This problem can be mitigated by manual providing the function
summaries for customized library functions. (2) EmTaint incorrectly
recovers some indirect calls that do not exist, which leads to infeasi-
ble paths. This problem can be solve by applying dynamic analysis
to filter the results (e.g., dynamic symbolic execution can be used
to solve the path constraints). We leave this as our future work. (3)
EmTaint uses the read function as a taint source. However, data
read from local files actually cannot be manipulated by attackers.
Although EmTaint filters obvious read operations from local files,
there are cases that EmTaint cannot distinguish statically.

6 RELATED WORK

Alias Analysis. Alias analysis is a long-term research topic in
source code analysis [1, 8, 16, 35, 36, 42]. However, alias analysis in
binary is not as advanced as source code analysis. Debray et al. [15]
proposed an inter-procedural flow-sensitive pointer alias analysis
for x86 executables, which is context-insensitive. Guo et al. [21]
presented the first context-sensitive points-to analysis for x86 as-
sembly code, which is only partially flow-sensitive. Reps et al. [4, 31]
utilized value-set analysis (VSA) to identify pointer alias through
tracking memory accesses in x86 executables. However, VSA is
expensive and unpractical for real-world complex programs [43].
To adapt to complex binaries, BDA [43] proposed to utilize path
sampling to generate accurate data dependency. However, it does
not cover all path and is limited by path depth, which makes it un-
able to guarantee the robustness of pointer analysis. BinPointer [24]
utilizes an offset-sensitive block memory model to implement inter-
procedural pointer analysis, which is flow-insensitive on memory
locations and context-insensitive. We proposed a new alias analysis
technique based on SSE. To the best of our knowledge, this is the
first work that simultaneously achieves on-demand, flow-, context-
and field-sensitive alias analysis for binary.

Vulnerability Detection Techniques for Embedded System.
For vulnerability detection of embedded system, there are both

370

static approaches [7, 9, 12, 14, 19, 25, 30, 33, 40] and dynamic ap-
proaches [6, 26, 27, 38, 44—-46]. In static approaches, since our re-
search scope focuses on using taint analysis techniques to detect
vulnerabilities in Linux-based firmware without source code, only
DTaint [9], KARONTE [30] and SaTC [7] can be applied to our
scenario. DTaint adopts pointer alias analysis to improve the data
flow analysis and utilizes data structure similarity matching to con-
struct data dependence between functions invoked by indirect calls.
However, DTaint lacks accuracy and efficiency in data flow analysis.
KARONTE is a static analysis framework for embedded firmware
that can discover vulnerabilities due to multi-binary interactions.
The authors achieve this goal by modeling and tracking multi-
binary interactions. SaTC also performs taint analysis to discover
vulnerabilities in embedded systems. It utilizes shared keywords
related to user input in the front-end and back-end to infer the
taint source. All the aforementioned works that detect taint-style
vulnerabilities did not perform indirect call resolution, which we
have demonstrated to be critical in §4.3.

7 CONCLUSION

In this work, we propose EmTaint, a novel static approach for accu-
rate and fast detection of taint-style vulnerabilities in embedded
firmware. The key techniques in EmTaint is SSE-based on-demand
alias analysis, which facilitates indirect call resolution and accu-
rate taint analysis. We implemented the prototype of EmTaint and
evaluated it against 35 real-world embedded firmware samples
from six popular vendors. The evaluation result shows that Em-
Taint discovered at least 192 vulnerabilities, including 41 n-day
vulnerabilities and 151 0-day vulnerabilities. At least 115 CVE/PSV
numbers have been allocated from a subset of the reported vulner-
abilities at the time of writing. Compared to state-of-the-art tools
such as KARONTE and SaTC, EmTaint found significantly more
vulnerabilities on the same dataset with high accuracy in less time.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments
to improve our paper. This work was partially supported by Na-
tional Key R&D Program of China (No. 2022YFB3103904), NSF CNS-
2019340, NSF ECCS-2140175, a grant from Cisco Research, National
Natural Science Foundation of China (No. 62072451, 92267105),
Guangdong Special Support Plan (No. 2021TQ06X990), and Shen-
zhen Basic Research Program (No. JCYJ20200109115418592 and
JCYJ20220818101610023).

DATA-AVAILABILITY STATEMENT

All tools and detailed instructions to reproduce our study are openly
available from Zenodo [17].

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

REFERENCES

(1]

[2

—

=

=

[10

[11

[12]

[14

[15]

[16]

[17]

(18

[19]

[20

[21]

Lars Ole Andersen. 1994. Program analysis and specialization for the C program-
ming language. Ph. D. Dissertation. Citeseer.

Angr 2023. Next-generation binary analysis framework. Retrieved May 22, 2023
from https://github.com/angr/angr

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps. SIGPLAN Not. 49, 6 (jun 2014), 259-269.
https://doi.org/10.1145/2666356.2594299

Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX: What You See is Not
What You EXecute. ACM Trans. Program. Lang. Syst. 32, 6, Article 23 (aug 2010),
84 pages. https://doi.org/10.1145/1749608.1749612

Bertrand Meyer 2019. Soundness and Completeness: Defined With Precision.
Retrieved May 22, 2023 from https://cacm.acm.org/blogs/blog-cacm/236068-
soundness-and-completeness-defined-with-precision/fulltext

Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-
based Fuzzing. In NDSS. http://dx.doi.org/10.14722/ndss.2018.23159

Libo Chen, Yanhao Wang, Quanpu Cai, Yunfan Zhan, Hong Hu, Jiaqi Linghu,
Qinsheng Hou, Chao Zhang, Haixin Duan, and Zhi Xue. 2021. Sharing More and
Checking Less: Leveraging Common Input Keywords to Detect Bugs in Embedded
Systems. In 30th USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 303-319.
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-libo
Ben-Chung Cheng and Wen-Mei W. Hwu. 2000. Modular Interprocedural Pointer
Analysis Using Access Paths: Design, Implementation, and Evaluation. SIGPLAN
Not. 35, 5 (may 2000), 57-69. https://doi.org/10.1145/358438.349311

Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin Sun, and
Zhenkai Liang. 2018. DTaint: Detecting the Taint-Style Vulnerability in Embedded
Device Firmware. In 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2018, Luxembourg City, Luxembourg, June 25-28, 2018.
IEEE Computer Society, 430-441. https://doi.org/10.1109/DSN.2018.00052
Claripy 2023. The API documentation provided by Claripy. Retrieved May 22,
2023 from https://docs.angr.io/projects/claripy/en/latest/api.html

CLE 2023. A python module for loading binaries. Retrieved May 22, 2023 from
https://github.com/angr/cle

Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. 2018. Inception:
System-Wide Security Testing of Real-World Embedded Systems Software. In 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association,
309-326. https://www.usenix.org/conference/usenixsecurity18/presentation/
corteggiani

CVE 2023. Common vulnerabilities and exposures. Retrieved May 22, 2023 from
https://cve.mitre.org/

Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013.
FIE on Firmware: Finding Vulnerabilities in Embedded Systems Using Symbolic
Execution. In Proceedings of the 22th USENIX Security Symposium, Washington,
DC, USA, August 14-16, 2013, Samuel T. King (Ed.). USENIX Association, 463—
478. https://www.usenix.org/conference/usenixsecurity13/technical-sessions/
paper/davidson

Saumya K. Debray, Robert Muth, and Matthew Weippert. 1998. Alias Analysis
of Executable Code. In POPL *98, Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, CA, USA, January
19-21, 1998, David B. MacQueen and Luca Cardelli (Eds.). ACM, 12-24. https:
//doi.org/10.1145/268946.268948

Alain Deutsch. 1994. Interprocedural May-Alias Analysis for Pointers: Beyond
k-limiting. In Proceedings of the ACM SIGPLAN’94 Conference on Programming
Language Design and Implementation (PLDI), Orlando, Florida, USA, June 20-24,
1994, Vivek Sarkar, Barbara G. Ryder, and Mary Lou Soffa (Eds.). ACM, 230-241.
https://doi.org/10.1145/178243.178263

EmTaint 2023. Reproduction Package for Article ‘Detecting Vulnerabilities in Linux-
based Embedded Firmware with SSE-based On-demand Alias Analysis’. Retrieved
May 27, 2023 from https://doi.org/10.5281/zenodo.7976968

EXPLOIT DATABASE 2023. Exploit database of the website. Retrieved May 22,
2023 from https://www.exploit-db.com/

Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker:
a semantic learning based vulnerability seeker for cross-platform binary. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, Marianne Huchard,
Christian Késtner, and Gordon Fraser (Eds.). ACM, 896-899. https://doi.org/10.
1145/3238147.3240480

Grammatech 2023. A source code and binary code static analysis tool. Retrieved
May 22, 2023 from https://www.grammatech.com/our-products/codesonar/
Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ottoni,
Easwaran Raman, and David I. August. 2005. Practical and Accurate Low-Level

371

[22

[23

[24]

~
2

[26

[27

S
&,

[29

[30

[31

[32

[33

[34

@
i

[36

[37

[38

[39

[40

Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

Pointer Analysis. In 3nd IEEE / ACM International Symposium on Code Genera-
tion and Optimization (CGO 2005), 20-23 March 2005, San Jose, CA, USA. IEEE
Computer Society, 291-302. https://doi.org/10.1109/CG0.2005.27

IDA Pro 2023. A powerful disassembler. Retrieved May 22, 2023 from https:
//www.hex-rays.com/ida-pro/

Karonte 2020. The experimental dataset used by tool Karonte. Retrieved May 22,
2023 from https://github.com/ucsb-seclab/karonte#dataset

Sun Hyoung Kim, Dongrui Zeng, Cong Sun, and Gang Tan. 2022. BinPointer:
towards precise, sound, and scalable binary-level pointer analysis. In CC °22: 31st
ACM SIGPLAN International Conference on Compiler Construction, Seoul, South
Korea, April 2 - 3, 2022, Bernhard Egger and Aaron Smith (Eds.). ACM, 169-180.
https://doi.org/10.1145/3497776.3517776

Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei
Zou. 2018. aDiff: cross-version binary code similarity detection with DNN. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, Marianne Huchard,
Christian Kastner, and Gordon Fraser (Eds.). ACM, 667-678. https://doi.org/10.
1145/3238147.3238199

Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018.
Avatar2: A multi-target orchestration platform. In Proc. Workshop Binary Anal.
Res.(Colocated NDSS Symp.), Vol. 18. 1-11.

Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. 2018. What You Corrupt Is Not What You Crash: Challenges in
Fuzzing Embedded Devices. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
The Internet Society. http://dx.doi.org/10.14722/ndss.2018.23166

PTABEN 2022. A micro-benchmark suite designed for validating various static
analysis algorithms. Retrieved May 22, 2023 from https://github.com/SVF-tools/
Test-Suite

PyVEX 2023. A python module for VEX intermediate represenation. Retrieved
May 22, 2023 from https://github.com/angr/pyvex

Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella,
Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. 2020. Karonte:
Detecting Insecure Multi-binary Interactions in Embedded Firmware. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 1544-1561. https://doi.org/10.1109/SP40000.2020.00036
Thomas W. Reps and Gogul Balakrishnan. 2008. Improved Memory-Access Anal-
ysis for x86 Executables. In Compiler Construction, 17th International Conference,
CC 2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008. Proceedings
(Lecture Notes in Computer Science, Vol. 4959), Laurie J. Hendren (Ed.). Springer,
16-35. https://doi.org/10.1007/978-3-540-78791-4_2

SaTC Dataset 2022. The experimental dataset used by tool SaTC. Retrieved
May 22, 2023 from https://drive.google.com/file/d/1rOhjBlmv3jYmkKhTB]JcqJ-
G56HoHBpVX/view

Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11,
2015. The Internet Society. http://dx.doi.org/10.14722/ndss.2015.23294
Johannes Spath, Karim Ali, and Eric Bodden. 2019. Context-, flow-, and field-
sensitive data-flow analysis using synchronized Pushdown systems. Proc. ACM
Program. Lang. 3, POPL (2019), 48:1-48:29. https://doi.org/10.1145/3290361
Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In Conference
Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Papers Presented at the Symposium, St. Petersburg
Beach, Florida, USA, January 21-24, 1996, Hans-Juergen Boehm and Guy L. Steele
Jr. (Eds.). ACM Press, 32-41. https://doi.org/10.1145/237721.237727

Yulei Sui and Jingling Xue. 2020. Value-Flow-Based Demand-Driven Pointer
Analysis for C and C++. IEEE Trans. Software Eng. 46, 8 (2020), 812-835. https:
//doi.org/10.1109/TSE.2018.2869336

Supplementary material 2023. A supplementary material for paper Detecting
Vulnerabilities in Linux-based Embedded Firmware with SSE-based On-demand
Alias Analysis’. Retrieved May 25, 2023 from https://drive.google.com/file/d/
15K3Nbqm15sTwfXvMuiwhwBqvFTscZ1cy/view

Zhiqiang Wang, Yuqing Zhang, and Qixu Liu. 2013. RPFuzzer: A Framework
for Discovering Router Protocols Vulnerabilities Based on Fuzzing. KSII Trans.
Internet Inf. Syst. 7, 8 (2013), 1989-2009. https://doi.org/10.3837/tiis.2013.08.014
Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani
Thuraisingham. 2011. Differentiating Code from Data in x86 Binaries. In Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part III (Lecture
Notes in Computer Science, Vol. 6913), Dimitrios Gunopulos, Thomas Hofmann,
Donato Malerba, and Michalis Vazirgiannis (Eds.). Springer, 522-536. https:
//doi.org/10.1007/978-3-642-23808-6_34

Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

https://github.com/angr/angr
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/1749608.1749612
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-defined-with-precision/fulltext
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-defined-with-precision/fulltext
http://dx.doi.org/10.14722/ndss.2018.23159
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-libo
https://doi.org/10.1145/358438.349311
https://doi.org/10.1109/DSN.2018.00052
https://docs.angr.io/projects/claripy/en/latest/api.html
https://github.com/angr/cle
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://cve.mitre.org/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://doi.org/10.1145/268946.268948
https://doi.org/10.1145/268946.268948
https://doi.org/10.1145/178243.178263
https://doi.org/10.5281/zenodo.7976968
https://www.exploit-db.com/
https://doi.org/10.1145/3238147.3240480
https://doi.org/10.1145/3238147.3240480
https://www.grammatech.com/our-products/codesonar/
https://doi.org/10.1109/CGO.2005.27
https://www.hex-rays.com/ida-pro/
https://www.hex-rays.com/ida-pro/
https://github.com/ucsb-seclab/karonte#dataset
https://doi.org/10.1145/3497776.3517776
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3238147.3238199
http://dx.doi.org/10.14722/ndss.2018.23166
https://github.com/SVF-tools/Test-Suite
https://github.com/SVF-tools/Test-Suite
https://github.com/angr/pyvex
https://doi.org/10.1109/SP40000.2020.00036
https://doi.org/10.1007/978-3-540-78791-4_2
https://drive.google.com/file/d/1rOhjBlmv3jYmkKhTBJcqJ-G56HoHBpVX/view
https://drive.google.com/file/d/1rOhjBlmv3jYmkKhTBJcqJ-G56HoHBpVX/view
http://dx.doi.org/10.14722/ndss.2015.23294
https://doi.org/10.1145/3290361
https://doi.org/10.1145/237721.237727
https://doi.org/10.1109/TSE.2018.2869336
https://doi.org/10.1109/TSE.2018.2869336
https://drive.google.com/file/d/15K3Nbqm15sTwfXvMuiwhwBqvFTscZ1cy/view
https://drive.google.com/file/d/15K3Nbqm15sTwfXvMuiwhwBqvFTscZ1cy/view
https://doi.org/10.3837/tiis.2013.08.014
https://doi.org/10.1007/978-3-642-23808-6_34
https://doi.org/10.1007/978-3-642-23808-6_34

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis

and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu
(Eds.). ACM, 363-376. https://doi.org/10.1145/3133956.3134018

Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. 2015. Auto-
matic Inference of Search Patterns for Taint-Style Vulnerabilities. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015.
IEEE Computer Society, 797-812. https://doi.org/10.1109/SP.2015.54

Dacong Yan, Guoging Xu, and Atanas Rountev. 2011. Demand-driven context-
sensitive alias analysis for Java. In Proceedings of the 20th International Symposium
on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21,
2011, Matthew B. Dwyer and Frank Tip (Eds.). ACM, 155-165. https://doi.org/10.
1145/2001420.2001440

Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and
Xiangyu Zhang. 2019. BDA: practical dependence analysis for binary ex-
ecutables by unbiased whole-program path sampling and per-path abstract
interpretation. Proc. ACM Program. Lang. 3, OOPSLA (2019), 137:1-137:31.
https://doi.org/10.1145/3360563

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

[44] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and

Limin Sun. 2019. FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware
via Augmented Process Emulation. In 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and
Patrick Traynor (Eds.). USENIX Association, 1099-1114. https://www.usenix.
org/conference/usenixsecurity19/presentation/zheng

Yaowen Zheng, Yuekang Li, Cen Zhang, Hongsong Zhu, Yang Liu, and Limin
Sun. 2022. Efficient greybox fuzzing of applications in Linux-based IoT devices
via enhanced user-mode emulation. In ISSTA °22: 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, South Korea, July
18 - 22, 2022, Sukyoung Ryu and Yannis Smaragdakis (Eds.). ACM, 417-428.
https://doi.org/10.1145/3533767.3534414

Yaowen Zheng, Zhanwei Song, Yuyan Sun, Kai Cheng, Hongsong Zhu, and Limin
Sun. 2019. An Efficient Greybox Fuzzing Scheme for Linux-based IoT Programs
Through Binary Static Analysis. In 38th IEEE International Performance Computing
and Communications Conference, IPCCC 2019, London, United Kingdom, October
29-31, 2019. IEEE, 1-8. https://doi.org/10.1109/IPCCC47392.2019.8958740

https://doi.org/10.1145/3133956.3134018
https://doi.org/10.1109/SP.2015.54
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/3360563
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://doi.org/10.1145/3533767.3534414
https://doi.org/10.1109/IPCCC47392.2019.8958740

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Taint-Style Vulnerability Detection
	2.2 Motivating Example
	2.3 Challenges and Key Idea

	3 Methodology
	3.1 Overview
	3.2 SSE-Based On-Demand Alias Analysis
	3.3 Indirect Call Resolution

	4 Implementation and Evaluation
	4.1 Vulnerability Discovery
	4.2 Effectiveness of SSE-Based Alias Analysis
	4.3 Indirect Call Resolution with Alias Analysis
	4.4 Comparison with KARONTE and SaTC

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

