
Detecting Vulnerabilities in Linux-Based Embedded Firmware
with SSE-Based On-Demand Alias Analysis

Kai Cheng
SIAT, CAS †

Sangfor Technologies Inc.
China

chengkai@sangfor.com.cn

Yaowen Zheng∗

Nanyang Technological University
Singapore

yaowen.zheng@ntu.edu.sg

Tao Liu
The Pennsylvania State University

USA
tul459@psu.edu

Le Guan
University of Georgia

USA
leguan@uga.edu

Peng Liu
The Pennsylvania State University

USA
pxl20@psu.edu

Hong Li
IIE, CAS ‡

China
lihong@iie.ac.cn

Hongsong Zhu
IIE, CAS ‡

School of Cyber Security, UCAS §

China
zhuhongsong@iie.ac.cn

Kejiang Ye
SIAT, CAS †

China
kj.ye@siat.ac.cn

Limin Sun
IIE, CAS ‡

School of Cyber Security, UCAS §

China
sunlimin@iie.ac.cn

ABSTRACT

Although the importance of using static taint analysis to detect taint-

style vulnerabilities in Linux-based embedded �rmware is widely

recognized, existing approaches are plagued by following major

limitations: (a) Existing works cannot properly handle indirect call

on the path from attacker-controlled sources to security-sensitive

sinks, resulting in lots of false negatives. (b) They employ heuristics

to identify mediate taint source and it is not accurate enough, which

leads to high false positives.

To address issues, we propose EmTaint, a novel static approach

for accurate and fast detection of taint-style vulnerabilities in Linux-

based embedded �rmware. In EmTaint, we �rst design a structured

symbolic expression-based (SSE-based) on-demand alias analysis

technique. Based on it, we come up with indirect call resolution

and accurate taint analysis scheme. Combined with sanitization

rule checking, EmTaint can eventually discovers a large number of

taint-style vulnerabilities accurately within a limited time. We eval-

uated EmTaint against 35 real-world embedded �rmware samples

from six popular vendors. The result shows EmTaint discovered

at least 192 vulnerabilities, including 41 n-day vulnerabilities and

151 0-day vulnerabilities. At least 115 CVE/PSV numbers have been

∗Yaowen Zheng is the corresponding author
†Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences
‡Institute of Information Engineering, Chinese Academy of Sciences
§School of Cyber Security, University of Chinese Academy of Sciences

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598062

allocated from a subset of the reported vulnerabilities at the time of

writing. Compared with state-of-the-art tools such as KARONTE

and SaTC, EmTaint found signi�cantly more vulnerabilities on the

same dataset in less time.

CCS CONCEPTS

• Security and privacy→ Software security engineering.

KEYWORDS

On-demand alias analysis, Taint analysis, Embedded �rmware

ACM Reference Format:

Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong

Zhu, Kejiang Ye, and Limin Sun. 2023. Detecting Vulnerabilities in Linux-

Based Embedded Firmware with SSE-Based On-Demand Alias Analysis. In

Proceedings of the 32nd ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA ’23), July 17–21, 2023, Seattle, WA, USA. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3597926.3598062

1 INTRODUCTION

With the emerging of the Internet of Things (IoT) technologies,

embedded devices are widely deployed in our daily life. For fast

development, vendors of devices prefer to customize Linux kernel

and compose the embedded Linux-based �rmware to manage and

control the device. For example, almost all the mainstream wire-

less routers are equipped with Linux-based embedded �rmware.

However, due to lack of comprehensive security assessment from

vendors, Linux-based embedded �rmware su�ers from a number

of vulnerabilities without revealed, which has brought signi�cant

impact to cyberspace security. Among various vulnerability types,

taint-style vulnerability is a typical vulnerability type where the

user input can reach to a security-sensitive sink without proper

check or sanitization [41]. Since Linux-based embedded devices

360

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3597926.3598062
https://doi.org/10.1145/3597926.3598062
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597926.3598062&domain=pdf&date_stamp=2023-07-13

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

POST /dnslookup.cgi HTTP/1.1

Host: 192.168.1.2

Content-Length: 27

User-Agent: Mozilla/5.0

Authorization: Basic YWRtaW

Content-Type: application/x-www-

form-urlencoded

lookup=Lookup&host_name=router

15 diagCgiDnslookup(post_d *d) {

16 char *cmd = websGetVar(d, "host_name");

17 system("echo lookupname %s", cmd);

18 }

1 http_d() {

2 char req[0x501];

3 post_d *d;

4 recv(fd, req, 0x500, 0);

5 d = parse_data(req);

6 handle_post(req, d);

7 }

8 handle_post(char *req, post_d *d) {

9 void (*fn)(post_d*);

10 char *name = getReqName(req);

11 // name is "dnslookup.cgi"

12 fn = indexHandler(name);

13 (*fn)(d);

14 }

Indirect call

Back-endFront-end

Send

Request

Figure 1: Motivating example in the NETGEAR DGN2200 router.

such as routers and web cameras frequently communicate with out-

side world, taint-style vulnerabilities are more likely to be triggered,

so that we need to prioritize the detection for it.

Static taint analysis is an e�ective technique for �nding taint-

style vulnerabilities in embedded �rmware, e.g, KARONTE [30] and

SaTC [7]. It can be used to perform the entire analysis of �rmware

and does not require the emulation and real devices. In the static

taint analysis, taint sources refer to library functions (e.g., recv,

recvfrom) that receive the user input, and taint sinks refer to the

security sensitive library function (e.g., strcpy, system) that can be

exploited to cause memory corruption or command injection. The

basic idea of taint analysis is to �nd data �ow path from taint source

to taint sink (we call it potential vulnerable path), and then perform

the security check on the path to infer whether the vulnerability

exists or not.

Challenges. However, e�ectively revealing potential vulnerable

paths is a challenging problem for taint analysis on embedded bi-

naries. The reason is twofold. On the one hand, in the back end

of Linux-based �rmware, most of the potential vulnerable paths

involve indirect calls (see §4.3), some of which cannot be directly

resolved. As the result, lots of potential vulnerable paths still remain

unrevealed in the target binary. On the other hand, the frequent

occurrence of variable alias also prevents data �ow analysis tech-

niques from �nding implicit potential vulnerable paths. To mitigate

these challenges, state-of-the-art works [7, 30] utilize heuristic

methods to identify the mediate taint source as an alternative to

the original taint source, so that it can shorten the length of poten-

tial vulnerable paths from user input to sink point, which reduce

the probability of encountering indirect call and variable alias is-

sues. Unfortunately, these approaches sometimes misidentify the

mediate taint source in back-end binaries, which cause false posi-

tives of �nding potential vulnerable paths. Meanwhile, indirect call

resolution is still not considered in these works due to associated

di�culties, so that many potential vulnerable paths are unrevealed,

which produces many false negatives.

Our solution. In this paper, we aim at completely, accurately re-

vealing potential vulnerable paths from taint source to taint sink

by solving the issues brought by indirect calls and implicit data

�ow. Our insight is that accurate alias analysis can facilitate both

indirect call resolution and implicit data �ow analysis during the

taint propagation. To this end, we propose a novel technique called

structured symbolic expression-based (SSE-based) on-demand alias

analysis. The technique overcomes the drawbacks of existing alias

analysis techniques (VSA-based or symbolic-execution-based ap-

proaches) from two aspects. First, our proposed technique designs

a new symbolic expression to represent alias information, which

improve accuracy of alias analysis compared with existing works.

Second, the technique only focuses on interesting variables (indirect

call targets and tainted variables) to perform on-demand analysis,

avoiding the holistic analysis of other irrelevant variables.

On the basis of SSE-based on-demand alias analysis, we pro-

pose EmTaint, which can e�ectively �nd taint-style vulnerabilities

in Linux-based embedded �rmware. The design of EmTaint is as

follows. First, EmTaint extracts the target binary executable from

embedded �rmware and builds the basic program representation

for further static analysis. Then, EmTaint performs SSE-based on-

demand alias analysis, which can help �nd the alias relationship

between the indirect call targets and function pointers. Based on

it, EmTaint designs both indirect call resolution and accurate taint

initialization and propagation scheme. Finally, EmTaint integrates

sanitization rule checking, and can �nd taint-style vulnerabilities

in Linux-based �rmware both e�ectively and e�ciently.

We have implemented the prototype of EmTaint with about

24,000 lines in Python. In EmTaint, the basic program representa-

tions are built by using IDA Pro [22], CLE [11], pyvex [29]. The

proposed SSE-based on-demand alias analysis and indirect call res-

olution are developed based on Claripy [10]. We evaluated EmTaint

with 35 real-world �rmware samples. The result shows EmTaint

discovered at least 192 vulnerabilities, including 41 n-day vulnera-

bilities and 151 0-day vulnerabilities, which takes an average of 3

minutes on each sample. We have reported 151 0-day vulnerabili-

ties to the relevant manufacturers for responsible disclosure. 115

of vulnerabilities are con�rmed by CVE/PSV at the time of writ-

ing. We also conducted a comparison with state-of-the-art works

KARONTE [30] and SaTC [7]. The results of the comparison shown

that EmTaint can �nd more vulnerabilities in less time. In addition,

we used EmTaint in the 2021 DataCon competition for the vulner-

ability detection of IoT �rmware, and �nally won the �rst place,

which demonstrates the e�ciency of EmTaint in the real world.

Contributions.We make the following contributions:

• We proposed a novel alias analysis technique called SSE-based

on-demand alias analysis, to handle the challenge of e�ectively

revealing potential vulnerable path for taint analysis.

• We proposed EmTaint, a novel methodology for detection of taint-

style vulnerabilities in Linux-based embedded �rmware. The

prototype was implemented with about 24,000 lines in Python.

361

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

• We evaluated EmTaint with extensive experiments. The result

proves that EmTaint outperforms state-of-the-art works in de-

tection of taint-style vulnerabilities in Linux-based �rmware.

Besides, EmTaint has discovered 151 0-day vulnerabilities (115

assigned with CVEs/PSVs) in 35 embedded �rmware samples.

• We released the source code and experiment data of EmTaint at

https://sites.google.com/view/emtaint/home for future research.

2 BACKGROUND AND MOTIVATION

2.1 Taint-Style Vulnerability Detection

Given an embedded binary, the standard taint analysis procedure for

detecting taint-style vulnerability consists of four steps. (1) Recover

the inter-procedural control �ow graph (ICFG) of the program. (2)

Identify attacker-controlled sources and security-sensitive sinks.

(3) Find a path where the taint is propagated from the source to

the sink. (4) Check the constraints of the tainted data at sinks. If

not constrained, an alert about the vulnerability is raised. An ideal

solution should achieve high accuracy in all these steps.

2.2 Motivating Example

However, how to e�ectively reveal the complete path from taint

source to sink (step 3) is a challenging problem. The main reason

is that the service program in embedded devices often register

callback functions to handle di�erent kinds of user requests, which

prevent taint propagation from source to sink. Only the user request

is speci�ed during the execution, the indirect call target can be

assigned with one of callback functions. That means, the indirect

call targets are still unknown when performing the static taint

analysis and thus the taint analysis would get stuck at these points.

Figure 1 shows an example of how indirect calls prevent taint

analysis techniques �nding command injection vulnerability in

NETGEAR DGN2200 router. First, the back-end receives the re-

quest from the front-end, and obtains URL dnsloopup.cgi through

the getReqName function and stores it in variable name (line 10).

Then, the back-end searches the function pointer in the global func-

tion table that is registered to handle dnsloopup.cgi (line 12) and

�nally calls function diagCgiDnslookup (line 13). The function

diagCgiDnslookup contains a command injection vulnerability:

the value of cmd comes from the user request (marked with red

color in the front-end) without any sanitization check. An attacker

can append additional commands to string ‘router’ to run arbitrary

commands on the device. However, in the static taint analysis, ∗5 =

(line 13) is unknown, so that taint analysis cannot reach to the

system function and �nd this potential vulnerability.

Existing works, including SaTC [7] and KARONTE [30] use

heuristics to infer the mediate taint source as representative of user

input and thus shorten the distance from taint source to sink, which

reduce the complexity of taint analysis. However, they still have

limitations. First, the heuristics to identify the mediate taint source

still produce lots of false positives and false negatives. Speci�cally,

SaTC utilize shared interface keywords from both front-end web

�les and back-end binaries to identify mediate taint source. How-

ever, the keywords of some user input do not exist in the front-end

web �les. For example, in NETGEAR R7800 router with �rmware

version V1.0.2.58, the keyword hidden_funjsq_username cannot be

found in the front-end web �les, so that SaTC fails to identify it, but

the value of it can cause a command injection vulnerability. Sec-

ond, indirect calls issues still exist in shortened paths from mediate

taint sources to sinks, which are not considered in existing works,

leading to false negatives in revealing vulnerable paths.

2.3 Challenges and Key Idea

From the study of state-of-the-art works and the observation of the

motivating example, we summarize two challenges for detecting

taint-style vulnerabilities in Linux-based �rmware. First, how to

�nd a complete path from real input source (e.g., recv function) to

the sink when indirect calls are involved on the path. Second, how

to detect vulnerabilities e�ciently while the path is deeper.

To address the above two challenges, we propose SSE-based on-

demand alias analysis, which serves as a fundamental technique

for indirect call resolution and accurate and e�cient taint analysis.

The SSE-based on-demand alias analysis can be explained from

two aspects. First, we design a new symbolic expression called

structured symbolic expression (SSE) inspired by access path [8].

However, access path targets source code, not the binary. SSE can

accurately describe nested memory-access variables (e.g., x.y.z)

to ensure the accuracy of alias analysis. Di�erent from symbolic

expression used in symbolic execution, SSE encodes both arithmetic

operations and memory operations such as load and store. Thus,

any forms of alias for given variables can be expressed accurately by

means of SSE. Second, we perform on-demand analysis to ensure the

e�ciency of alias analysis. That means, only interesting variables,

such as indirect call targets and tainted variables, need to be traced,

avoiding the time-consuming holistic analysis. Based on SSE-based

on-demand alias analysis, we take strategies to handle indirect

calls and ful�l the accurate taint propagation. After that, we can

reveal complete potential vulnerable paths from input sources to

security-sensitive sinks e�ectively.

3 METHODOLOGY

3.1 Overview

EmTaint takes an embedded �rmware image as input and reports

potential taint-style vulnerabilities as output. As shown in Figure 2,

EmTaint consists of four major components.

Firmware Preprocessing. The �rmware preprocessing module

decompresses and extracts binaries from �rmware. Then, the mod-

ule converts the code of binary into intermediate representation

(IR). After that, it builds control �ow graph (CFG) and a partial call

graph (CG) that facilitate subsequent analysis.

SSE-BasedOn-DemandAlias Analysis. The alias analysis engine

de�nes a new structured symbolic expression (SSE) to accurately

represent the alias information, and designs alias update mecha-

nisms to �nd aliases throughout the entire binary executable. To

achieve on-demand analysis, it only computes aliases related to the

variables of interest. This would avoid the overhead of calculating

aliases for a large number of unrelated variables, so that the analysis

can be applied to complex �rmware binaries.

Indirect Call Resolution. Leveraging the data dependence infor-

mation provided by the proposed SSE-based alias analysis engine,

we further design an indirect call resolution algorithm that checks

the data dependence between the indirect callsites and referenced

function pointers (or function table pointers). The mechanism helps

362

https://sites.google.com/view/emtaint/home

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

Firmware

SSE-based

On-demand

Alias Analysis
Indirect Call

Resolution

Taint Initialization

and Propagation

Vulnerability

Check Module

Firmware

Preprocessing

Reports

Taint-style

Vulnerability Check

Figure 2: The overview of EmTaint

subsequent taint analysis cross more function boundaries, and im-

prove the discovery capability of taint-style vulnerabilities.

Taint-Style Vulnerability Check. The taint-style vulnerability

check module is responsible for identifying the potential taint-style

vulnerabilities. Speci�cally, it �rstly taints the variables at taint

sources that are controlled by attackers (e.g., recv function). Then, it

captures taint propagation via the on-demand alias analysis module

and taint propagation operations. Finally, at security-sensitive sinks

(e.g., the system function), if the corresponding variable is tainted

and unconstrained, we mark it as a potential vulnerability. Since the

high-level idea of taint-style vulnerability detection is consistent

with [3, 7, 30], so we include the detailed process description in [37].

3.2 SSE-Based On-Demand Alias Analysis

In this section, we �rst start with the de�nition of structured sym-

bolic expressions (SSE). Then, we model the on-demand alias anal-

ysis problem with SSE. Based on it, we described how to perform

updates to SSE on each instruction.

Table 1: Recursive de�nition of SSE.

4G?A ::= 4G?A ♦1 4G?A | ♦D4G?A | E0A

♦1 ::= +, −, ∗, /,≪,≫, ...

♦D ::= ∼ , !, ...

E0A ::= gA46 | g<4< | gE0;
gA46 ::= A8
gE0; ::= {�=C464A }

g<4< ::= ;>03 (4G?A) | BC>A4 (4G?A)

3.2.1 Definition of SSE. SSE is a new notation that uses abstract

memory model to represent aliases of a variable by encoding the

nested memory-access information at relevant program points. In

Table 1, we recursively de�ne an SSE expression. Note that since our

implementation is based on VEX IR, our SSE de�nition is deeply

in�uenced by its design, in particular the basic statements and

memory model. An SSE could be any basic variable or the results

of a binary/unary arithmetic operation over basic variables. The

basic variable can be either a register (denoted as gA46), a primitive

immediate value (denoted as gE0;), or a memory access (denoted

as g<4<). The memory access can be a value loaded from memory

(denoted as ;>03 (4G?A)) or a value stored to memory (denoted as

BC>A4 (4G?A)). Here, the 4G?A is a pointer.

An Intuitive Example. We use an intuitive example to explain

how we leverage SSE to �nd aliases for a given pointer. In the

1 LDR R1, [R3, 0x8]

2 LDR R2, [R3, 0x4]

3 MOV R0, R1 // R1 is pointer

4 STR R3, [R6, 0x4]

Backward analysis Forward analysis

1' load(R3+0x8)

3' R1 // initialized SSE

4' load(store(R6+0x4)+0x8)

Figure 3: Example to illustrate SSE-based alias analysis

code snippet in Figure 3, there are four instructions. Our goal is

to �nd all aliases of R1 in line 3, which is known to be a pointer.

First, we initialize the alias set with R1 in line 3′. By looking back-

ward, we �nd a de�nition of R1 in line 1, which gets its value by

loading from memory R3+0x8. Therefore, by replacing R1 with

load(R3+0x8), we add load(R3+0x8) in line 1
′ to the alias set.

Now, if we look forward from line 1, we �nd a usage of R3 in line 4.

That is, the value of R3 is stored in the memory R6+0x4. Therefore,

by replacing R3 with store(R6+0x4) in load(R3+0x8), we add

load(store(R6+0x4)+0x8) in line 4′ to the alias set. By doing so

back and forth iteratively along the de�ne-use and use-de�ne chain,

we can eventually reach a �xed point of the alias set for the given

pointer. In particular, we only need to calculate aliases related to

variables of interest and avoid analyzing other extraneous variables

(e.g., the variable at line 2) to improve speed. The full SSE update

rules on each instruction and the algorithm for inter-procedural

analyses are explained in the following sections.

3.2.2 On-Demand Alias Analysis with SSE. Starting with the inter-

procedural CFG and a query (e.g., a pointer ?), our on-demand alias

analysis algorithm involves two main aspects: (Aspect 1) how the

alias analysis of one particular function works; (Aspect 2) how the

termination of the analysis of one function triggers the analysis of

another function to get started.

Aspect 1 of our algorithm. We �rst de�ne a graph called alias

analysis graph (AAG) to formally model the update and propagation

behavior of SSE-based analysis within a particular function.

Definition 1 (AAG). AAG is a directed, attributed graph G (N, E,

S, Ftran, Btran, Fprop, Bprop), where N is a set of nodes {=1, =2, ..., =: }

with each node =8 representing an instruction, � is a set of directed

edges representing the control �ow transfer relation between nodes,

each node has four separate sets of SSEs serving as node attributes, and

(is the union of all the SSE sets on each node. Finally, �CA0= and �CA0=

are the two sets of transfer functions that update the SSE sets on each

node during forward analysis and backward analysis, respectively.

�?A>? and �?A>? are the two sets of functions that propagate SSEs

along the direction and against the direction of each edge, respectively.

Since the alias analysis is performed in both forward and back-

ward directions, (in AAG records SSE information of each node

for both directions. The concrete de�nition is as follows.

• (= : For a node =, (= is consisted of four SSE sets: 5 8=, 5 >DC , 18=,

and 1>DC . 5 8= is only used in forward analysis, while 18= is only

used in backward analysis.

• �CA0== : For a node =, it takes 5 8= of node = and the instruction

on node = as inputs and updates two SSE sets 5 >DC and 1>DC .

• �CA0== : For a node =, it takes 18= of node = and the instruction

on node = as inputs and updates two sets 5 >DC and 1>DC .

363

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

• �?A>?=→< : For an edge = →<, it propagates the SSEs held in

5 >DC of node = to the 5 8= set of node<.

• �?A>?=→< : For an edge = →<, it propagates the SSEs held in

1>DC of node< to the 18= of node =.

Definition 2 (AAG-Q). AAG-Q is an on-demand alias analysis

method based on AAG. Given the AAG of a particular function 5 and

a pointer ? at node< as query, AAG-Q runs the following algorithm

to output ?’s potential aliases on every node in the function’s AAG:

1) Initialize the 5 8= set of node< as {?}.

2) Run a multi-iteration process until the following termination

condition is met: the 5 8= sets and the 18= sets on all nodes no longer

grow with an additional iteration. It should be noticed that a �xed

point will be reached when the termination condition is met.

3) Each iteration consists of two passes: the forward analysis

pass and the backward analysis pass.

4) During each iteration, the forward analysis pass works as

follows:

• First, each node is accessed through reverse-postorder traversal

on graph AAG of function 5 .

• When node = is visited, if it is neither a call site node nor the

function’s start/return node, perform the following operations:

5 >DC=, 1>DC= = �CA0== (5 8==, =)

�?A>?=→B : 5 8=B = 5 8=B ∪ 5 >DC=, B ∈ BD22=
�?A>?A→= : 18=A = 18=A ∪ 1>DC=, A ∈ ?A43= ,

where B ∈ BD22= denotes that B is a successor node of = in the

graph AAG, and A ∈ ?A43= denotes that A is a predecessor node

of =.

• In case the current node is a call-site node, the modi�cations

and references summary of the callee function will be �rstly

calculated using the technique proposed in [8]. Then a special

transfer function will take the calculated summary and 5 8= of

the call-site node as inputs and updates two sets 5 >DC and 1>DC

of the call-site node. After the updating is completed, the SSEs in

5 >DC and 1>DC are propagated with �?A>? and �?A>? described

in aforementioned operations.

• In case the current node is a start node, it performs the aforemen-

tioned operations except for �?A>? .

• In case the current node is a return node, it performs the afore-

mentioned operations, except that function �?A>? is implemented

as follows:

�?A>?=→B : 5 8=B = 5 8=B ∪�ℎ>>B4 (5 >DC=), B ∈ A4CB8C4B5 ,

where �ℎ>>B4 () operation selects the SSEs related to the return

register (e.g., '0 in ARM) of the function 5 and the SSEs related

to global pointers, and B ∈ A4CB8C4B5 denotes that B is a return-site

node from function 5 to caller.

5) During each iteration, the backward analysis pass works as

follows:

• First, each node is accessed through postorder traversal on graph

AAG of function 5 .

• When node = is visited, if it is neither a call-site node nor the

function’s start/return node, perform the following operations:

5 >DC=, 1>DC= = �CA0== (18==, =)

�?A>?=→B : 5 8=B = 5 8=B ∪ 5 >DC=, B ∈ BD22=
�?A>?A→= : 18=A = 18=A ∪ 1>DC=, A ∈ ?A43=

• In case the current node is a call-site node, the modi�cations

and references summary of the callee function will be �rstly

calculated using the technique proposed in [8]. Then a special

transfer function will take the calculated summary and 18= of the

call-site node as inputs and updates two sets 5 >DC and 1>DC of the

call-site node. After the updating is completed and the SSEs in

5 >DC and 1>DC are propagated with �?A>? and �?A>? described

in aforementioned operations.

• In case the current node is a start node, it performs the aforemen-

tioned operations, except that function �?A>? is implemented as

follows:

�?A>?2→= : 18=? = 18=? ∪ �ℎ>>B4 (1>DC=),

{

2 ∈ 20;;B8C4B5
? ∈ ?A432

,

where �ℎ>>B4 () operation selects the SSEs related to the argu-

ment registers (e.g., '0 in ARM) of the function 5 and the SSEs

related to global pointers, 2 ∈ 20;;B8C4B5 denotes that 2 is a call-

site node for calling function 5 .

• In case the current node is a return node, it performs the afore-

mentioned operations except for �?A>? .

Note: the update rules with function summary is explained in

detail in [37].

Aspect 2 of our algorithm. Our algorithm conducts inter-

procedural on-demand alias analysis, but this does not mean that

our algorithm will actively work on every function (in the target

program) all the time. In fact, many functions will stay “dormant”

until being triggered, and the alias analysis of a function will be

triggered when any of the following conditions is met. (a) The

query will automatically trigger the alias analysis of the function

which uses pointer ? . The function is the �rst one which will be

analyzed by our algorithm. At this moment, all the other functions

are actually “dormant”. (b) When the alias analysis of a function

� terminates, if � has a caller function, the analysis of the caller

function will be triggered. When condition (a) is met, Aspect 1

of our algorithm describes all the operations performed by our

algorithm. However, when condition (b) is met, our algorithm does

the following beyond Aspect 1. First, it checks whether the 5 8= set

of the return-site node and the18= set of the predecessor node of the

call-site node in the caller function’s AAG-Q have changed. Then,

if it changes, the caller function is analyzed as Aspect 1. Otherwise,

the caller function goes back to “dormant”.

3.2.3 Updating Rule within Transfer Function. In the above section,

we introduce the iterative algorithm of inter-procedural on-demand

alias analysis, which involves the transfer functions (�CA0= and

�CA0=) that update the SSE sets on each normal node, In this sec-

tion, we illustrate the corresponding update rules in detail. At each

normal node, the rules of �CA0== and �CA0== is shown in Table 2.

(1) Update rules of Ftran. The rules of �CA0= are listed in

entries 1-7 in Table 2. In the table, each rule is represented as

BC0C4<4=C
A=
−−→
2

4G?A .A4?;024 (A=, A 9). Given the instruction of node,

and the tracking SSE 4G?A from 5 8= of node, we �rst �nd the

matched rule where BC0C4<4=C can represent the instruction. After

�nding the exact rule, we then check if 2 is true and A= exists in

4G?A . If satis�ed, new SSE should be generated where A= is replaced

with A 9 . Note that this process should be conducted over all the live

variables in the current SSE. To explain the rules of �CA0= more

clearly, we give an example here. The given instruction is 3 = E ,

364

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

Table 2: Update rules for structured symbolic expressions

SSE update with de�ne-use chain

(1)A8 = A 9
A 9
−−→ 4G?A .A4?;024 (A 9, A8) (2)A8 = �8=>? (A=, A<)

A=♦1A<
−−−−−−−→ 4G?A .A4?;024 (A=♦1A<, A8)

(3)A8 = �)� (A 9, A=, A<)
A=
−−→ 4G?A .A4?;024 (A=, A8)§ (4)A8 = �)� (A 9, A=, A<)

A<
−−→ 4G?A .A4?;024 (A<, A8)§

(5)A8 = !>03 (A 9)
;>03 (A 9)
−−−−−−−→ 4G?A .A4?;024 (;>03 (A 9) , A8) (6)(C>A4 (A8) = A 9

A 9
→ 4G?A .A4?;024 (A 9, BC>A4 (A8))

(7)A8 = !>03 (A 9)
BC>A4 (A 9)
−−−−−−−−→ 4G?A .A4?;024 (BC>A4 (A 9) , A8)

SSE update following use-de�ne chain

(8)A8 = A 9
A8
−→ 4G?A .A4?;024 (A8, A 9) (9)A8 = �8=>? (A=, A<)

A8
−→ 4G?A .A4?;024 (A8, A=♦1C<)

(10)A8 = �)� (A 9, A=, A<)
A8
−→ 4G?A .A4?;024 (A8, A=)§ (11)A8 = �)� (A 9, A=, A<)

A8
−→ 4G?A .A4?;024 (A8, A<)§

(12)A8 = !>03 (A 9)
A8
−→ 4G?A .A4?;024 (A8, ;>03 (A 9)) (13)(C>A4 (A8) = A 9

;>03 (A8)
−−−−−−−→

∗
4G?A .A4?;024 (;>03 (A8) , A 9)

SSE kills

(14)A8 = A 9
A8
−→ 4G?A .:8;; () (15)(C>A4 (A8) = A 9

BC>A4 (A8) >A ;>03 (A8)
−−−−−−−−−−−−−−−−−−→

+
4G?A .:8;; ()

§: The statement A8 = �)� (A 9, A=, A<) denotes that if A 9 is true, A8 = A=, otherwise, A8 = A<. We ignore conditional judgments in the update rules.
*: Existing ;>03 (A8) in 4G?A occurs after the newly encountered BC>A4 (A8) statement.
+: Existing BC>A4 (A8)/;>03 (A8) in 4G?A occurs before the newly encountered BC>A4 (A8) statement.

and the current SSE is E + > . Thus, we identify the rule 1 in Table 2

as the matched one and a new SSE 3 + > is generated by replacing

the variable E in the original SSE with the variable 3 . The new SSE

generated by rules 1-7 is saved to set 5 >DC of node. In particular,

the new SSE generated by rule 6 is also saved in set 1>DC of node

and used to �nd aliases of address A8 in backward iterative analysis.

(2) Update rules of Btran. The rules of �CA0= are listed in

entries 1-6 (except for entry 7) and 8-13 in Table 2. Similarly, each

rule is represented as BC0C4<4=C
A=
−−→
2

4G?A .A4?;024 (A=, A 9). Given

the instruction of the node, and the tracking SSE 4G?A from 18=

of the node, we �rst �nd the matched rule where BC0C4<4=C can

represent the instruction. After �nding the exact rule, we then

check if 2 is true and A= exists in 4G?A . If satis�ed, new SSE should

be generated where A= is replaced with A 9 . We also give an example

here. The given instruction is E = D and the current SSE is ;>03 (E).

Thus, we identify the rule 8 in Table 2 as the matched one, and a

new SSE ;>03 (D) is generated by replacing the variable E in the

original SSE with the variable D.

Unlike �CA0=, which only checks whether the use variable (en-

tries 1-7 in Table 2) exists in the tracking SSE 4G?A , �CA0= needs to

check use (entries 1-6 in Table 2) and de�nition variable (entries

8-13 in Table 2), both of which generate aliasing relationships. It is

worth noting that in backward analysis, the new SSE updated by

entries 1-5 is saved in set 5 >DC of node, that is, it can only propagate

forward, and the new SSE updated by entries 6 and 8-13 is saved in

both set 5 >DC and 1>DC of node, that is, it can propagate forward as

well as backward.

(3) Conditions for terminating an SSE. Each variable has its

own live scope. If a register assignment statement is encountered

during forward or backward analysis, the liveness of the corre-

sponding register (i.e., gA46) is killed and the entire SSE associated

with this register is terminated. This corresponds to rule 14 in

Table 2. Similarly, if a BC>A4 statement is encountered during for-

ward analysis, the liveness of the corresponding memory access

(i.e., g<4<) is killed and the entire SSE associated with this variable

is terminated. This corresponds to rule 15 in Table 2.

3.2.4 Handling Data-Flow Cycles and Recursive Data Structure. The

SSE describing memory access variables is a storeless mode [8]

and represents an unbounded value domain, which may cause

our algorithm to fail to reach a �xed point. To solve this problem,

EmTaint utilizes k-limiting [16] method to limit the length of SSE,

where : is set to 5. With k-limiting, the input sets 5 8= and 18= of our

algorithm guarantee convergence and our algorithm guarantees to

reach a �xed point. In addition to the k-limiting method, EmTaint

also uses access-path abstraction to abstract data-�ow cycles and

recursive data structure.

loc_30560

1 LDR R1, [R3, 0x4]

2 MOV R3, R1

3 BNE loc_30560
4 LDR R0, [R3]

loc_30620

5 ADDS R3, #0xC

6 CMP R2, #0

7 BNE loc_30620
8 LDR R0, [R3,#0x8]

loc_30710

9 MOV R0, R5

10 BL foo

11 BE loc_30710

foo(R0):

12 LDR R1, [R0]

13 ADD R1, #0x1

14 STR R1, [R0]

(a)

(c)

(b)

Figure 4: Examples that cause SSE to be in�nitely long

We summarize three cases that lead to in�nite SSE in our on-

demand alias analysis. (1) The access of a recursive data structure

in a loop. For example, in Figure 4(a), register '3 points to a recur-

sive data structure. Querying the pointer '3 will obtain the aliases

SSEs as load(R3+0x4), load(load(R3+0x4)+0x4) and so on. (2)

The access of incremented pointer in a loop, where the pointer

value is incremented directly each loop iteration (e.g., register '3 in

Figure 4(b) is incremented by 0xC in each iteration). (3) The access

of incremented pointer in a loop, the pointer value is incremented

indirectly by calling a function. For example, 5 >> in Figure 4(c)

is called through a loop, where the callee 5 >> increases the value

pointed to by the pointer parameter '0 by 0x1 in each loop iteration.

These three cases have the same feature: cyclic data dependence

that exists in backward iterative update.

365

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

To this end, we take steps to prevent the generation of in�nite

SSEs in these three cases. For the case (1), when an alias SSE is

updated in the same load instruction twice in backward analysis, we

abstract the SSE as recursive expression ';>03 (10B4 + > 5 5), which

represents ;>03 (10B4 + > 5 5), ;>03 (;>03 (10B4 + > 5 5) + > 5 5) and so

on. For the case (2) and case (3), when an alias SSE is updated in the

same add instruction like ‘ADD R3, cons’ (or function summary

like BC>A4 ('0) = ;>03 ('0) + 2>=B) twice in backward analysis, we

abstract the SSE as increasing expression 10B4 + 8 ∗ 2>=B , where 8

represents the number of iterations of the loop and 2>=B represents

the constant increase in the value of pointer 10B4 each iteration.

3.2.5 Termination, Completeness, Soundness, and Complexity. The

proposed on-demand alias analysis AAG-Q is inspired by access-

path [8] and :-limiting approaches [16], which help bound the

length of SSE. The main di�erence is that existing approaches only

iteratively track unidirectional data dependencies but we perform

bidirectional data dependencies, obtaining the forward analysis

output 5 >DC and the backward output 1>DC , respectively. Therefore,

the termination condition of our algorithm is similar to that of

standard data-�ow analysis with access-path and :-limiting. In

particular, our algorithm guarantees to reach a �xed point.

Based on Meyer’s article about completeness and soundness [5],

we unambiguously de�ne completeness and soundness in the set-

ting of alias analysis as follows. AAG-Q is sound if AAG-Q says

p1 and p2 are aliases, then p1 and p2 are indeed aliases. AAG-Q

is complete if p1 and p2 are aliases, then AAG-Q will say p1 and

p2 are aliases. Under this de�nition, AAG-Q is unsound because

:-limiting is adopted. Speci�cally, by bounding the length of SSEs,

AAG-Q may wrongly report aliases which are not. Based on our

evaluation, among 166 reported aliases, 158 were true positives (see

Section 4.2). In addition, AAG-Q may miss aliases when 1) the dis-

sembler makes mistakes, or 2) the algorithm reaches 15 iterations

for a function. Therefore, our analysis is incomplete. The �rst factor

is unavoidable due to the fundamental problem with any binary

analysis method. That is, disambiguating between references and

literal values in a binary is undecidable in general [39]. The second

factor is imposed by ourselves due to performance considerations.

Speci�cally, to strike the balance between soundness and e�ciency,

we made a compromise by limiting the number of iterations to 15

for each function in our on-demand alias analysis within a function

(Section 3.2.2). During our evaluation, we found that the execution

time could become unacceptable for some complex programs (e.g.,

with too many branches inside a loop). The number 15 was chosen

mainly based on our empirical study which shows that increasing

the number of iterations over 15 did not result in a better result in

resolving indirect calls and discovering vulnerabilities. Even with

this limit, we successfully found 158 aliases among 166 con�rmed

aliases (see Section 4.2). Since this is a tunable parameter, analysts

can always select one that works best for the target program based

on the time budget and the soundness requirement.

The complexity of our algorithm can be measured with the fol-

lowing parameters: N which denotes the total number of nodes

in graph AAG of all functions, V5 which denotes the number of

variables in a single function, F which denotes the total number of

�elds in all structures, and : which denotes the value of :-limiting.

The worst-case complexity can be expressed as $ (|N| |V5 |
2 |F|2:)

for both time and space. The complexity of our algorithm is consis-

tent with inter-procedural pointer analysis [8], which is considered

acceptable in practice.

tptr
load(ptr)

Match Update

store(ptr)

load(load(ptr))

store(ptr)

targets

Backward

fptr dptr Backward

& Forward

CTexpr

Pexpr

Figure 5: Overview of indirect call resolution.

3.3 Indirect Call Resolution

EmTaint resolves indirect calls based on dependencies between the

aliases of indirect call targets and the aliases of function pointer

references (or function table pointers). First, EmTaint identi�es all

the indirect call instructions by traversing through the disassem-

bled code. EmTaint treats all branch instructions with a register as

indirect calls (e.g., blx r0 in ARM and jalr $t9 in MIPS). EmTaint

then uses IDA Pro to �lter call instructions whose targets can be

recognized. The remaining ones were treated as unresolved indirect

calls. Since almost all the call instructions in MIPS use a register

as operand, MIPS programs have a considerably larger number of

indirect calls than ARM programs (see Table 6).

Second, EmTaint �nds all address-taken functions by scanning

both the code segment and data segment, and locates all the ref-

erences to the address-taken functions. Here the address-taken

functions stand for functions that have function pointers referring

to them. There are mainly two ways to reference a function. A

function pointer which contains the address of the function, can be

used directly as an operand in an indirect call. We denote this kind

of references as 5 ?CA and show an example in line 2 of Listing 1. A

function table pointer which contains the address to a function table,

can be used indirectly (i.e., by dereferencing the function table �rst)

to get the real function address. We denote this kind of references

as 3?CA and show an example in line 7. In this example, an entry in

the table has two �elds – a string pointer to the index name and the

actual function pointer. For the target of indirect call, we denote it

as C?CA and show an example in line 5 and 13.

1 void (* fun_ptr)() = &fun; //address -taken function

2 fptr = fun_ptr;

3 x.y.z = fptr;

4 fp1 = x.y.z;

5 call fp1; // indirect call

6

7 dptr = 0x92C44; // function table address

8 while (strcmp (*dptr , name)){

9 dptr += 0x8;

10 ...

11 }

12 fp2 = *(dptr+0x4);

13 call fp2; // indirect call

Listing 1: Indirect call resolution example.

Finally, EmTaint performs SSE-based alias analysis and �nd de-

pendence between indirect call targets C?AC and the original ref-

erences 5 ?CA/3?CA . Figure 5 illustrates the process of indirect call

resolution. EmTaint back tracks the C?AC to �nd its all aliases. Mean-

while, EmTaint �nds the aliases of 5 ?CA and 3?CA through both

366

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

Table 3: Alerts produced by EmTaint for 35 samples

Vendor ID Firmware Version Arch Binary Size (KB) Ana. Func Tainted Sinks Alerts Time (s)

Cisco (2)
1 RV320_v1.4.2.20 MIPS64 ssi.cgi 1,820 1,567 1450 335 634.64

2 RV130_v1.0.3.44 ARM32 httpd 612 796 402 150 60.96

D-Link (7)
3 DIR-825_B_2.10 MIPS32 httpd 531 447 198 36 95.02

4 DAP-1860_A1_B03 MIPS32 uhttpd 1,129 1,030 106 12 97.02

TRENDnet (2)
10 TEW632BRP_1.010B32 MIPS32 httpd 314 315 149 26 40.08

11 TEW827DRU_2.04B03 MIPS32 ssi 998 622 289 142 58.20

NETGEAR (17)
12 R7800_v1.0.2.32 ARM32 net-cgi 542 1,286 291 119 88.91

13 R8000_v1.0.4.4 ARM32 httpd 1,508 1,088 428 36 167.48

TP-Link (3) 29 WR940NV4_us.3.16.9 MIPS32 httpd 1,691 3,481 225 31 343.16

Tenda (4) 32 AC9V3.0_v15.03.06.42 MIPS32 httpd 2,039 1,201 172 84 433.62

Total (35)§ - - - - - 38,983 9,346 1,887 179.81†

§: The row labelled “Total” shows aggregated results for 35 samples. Due to page limit, we only list 10 representative samples in the table. The other 25 samples can be found in Table 4 in [37].
†: The average execution time per sample.

forward and backward analyses. Then, EmTaint collects all the alias

SSEs in the entry block and exit block of every function, checks

the data dependency between aliases of 5 ?CA/3?CA and aliases of

C?AC , and matches and updates them. We denote the alias SSEs of

the C?AC as �)4G?A (call target expression), and the alias SSEs of

the 5 ?CA or 3?CA as %4G?A (pointer expression). Next, we explain

how to analyze �)4G?A and %4G?A and infer indirect call targets

associated with function table.

In the simplest form, a �)4G?A and a %4G?A match directly. Em-

Taint can calculate the call target directly from �)4G?A . This often

indicates an indirect call referenced by 5 ?CA . If the �)4G?A can be

represented by ;>03 (3?CA +8 ∗BCA834), where the 3?CA is the address

of a function table, the BCA834 is a constant, and 8 is an index, it

strongly indicates a function table reference. In this case, EmTaint

attempts to read values from addresses 3?CA + 8 ∗ BCA834 , where the

index 8 starts at 0 and increases by 1 at a time. It terminates when

the retrieved value is greater than the maximum address of the

function table. If the returned value is a legitimate function address,

EmTaint adds it to the set of indirect call targets.

For the indirect call targets that cannot be accurately traced to a

speci�c 5 ?CA or 3?CA , we indirectly �nd their dependencies. Our ob-

servation is that 5 ?CA and 3?CA are often stored in a multi-level data

structure whose root pointer is a global pointer (denoted as 6?CA).

Therefore, we often �nd BC>A4 (6?CA) in %4G?A . To indirectly call the

target, the program also needs to refer to the same global pointer

before the callsites. If the �)4G?A can be simpli�ed to ;>03 (6?CA),

where the same 6?CA is used in the %4G?A , the indirect call target is

immediately recovered by using 5 ?CA . If the �)4G?A can be simpli-

�ed to ;>03 (;>03 (6?CA) + 8 ∗ BCA834), where the same 6?CA is used

in %4G?A , by replacing ;>03 (6?CA) in�)4G?A with 3?CA (since 3?CA

has an alias SSE ;>03 (6?CA)), a new SSE ;>03 (3?CA + 8 ∗ BCA834) can

be generated. Then, EmTaint resolves the indirect call targets using

;>03 (3?CA + 8 ∗ BCA834).

4 IMPLEMENTATION AND EVALUATION

EmTaint is implemented with about 24,000 lines in Python (not

including the open source code), and the implementation details can

be found in [37]. In the evaluation, we aim to answer the following

four questions. (1) How e�ective is it in uncovering real-world

taint-style vulnerabilities in embedded �rmware (§4.1)? (2) How

Table 4: True positive evaluation by random sampling

ID Model Alerts # of Samples # of TP

1 Cisco RV320 335 34 32

2 Cisco RV130 150 15 15

3 D-Link DIR-825 36 4 3

4 D-Link DAP-1860 12 2 2

10 TRENDnet TEW632BRP 26 3 2

11 TRENDnet TEW827DRU 142 14 7

12 NETGEAR R7800 119 12 10

13 NETGEAR R8000 36 4 4

29 TP-Link WR940NV4 31 4 4

32 Tenda AC9 84 8 7

Total 10 971 100 86

accurate is the SSE-based on-demand alias analysis algorithm(§4.2)?

(3) How e�ective is it in indirect call resolution with the support

of SSE-based alias analysis? To what extent does the indirect call

resolution play a role in improving vulnerability discovery (§4.3)?

(4) How e�ective is it compared with the state-of-the-art techniques

(§4.4)?

Experiment Setup. Our evaluation dataset consists of 35 di�er-

ent �rmware samples from six major emebedded system vendors:

Cisco, D-Link, NETGEAR, TRENDnet, TP-Link and Tenda. The

majority of the �rmware samples (31 samples) are selected from the

dataset of the baseline KARONTE [30]. The remaining four samples

are manually downloaded from the o�cial websites of Cisco and

TRENDnet. The summarized information is listed in Table 3, where

Size denotes the size of the binary �le we test (e.g., httpd). We can

see from Table 3 that samples covers three architectures including

ARM32, MIPS32 and MIPS64, which are the mainstream architec-

tures used in Linux-based embedded devices. All the experiments

were conducted on a Ubuntu 18.04.4 LTS OS running on PC with a

8-core Intel Core i7-8550U CPU and 24 GB RAM.

4.1 Vulnerability Discovery

Table 3 shows the results that EmTaint has found 9,346 di�erent

sinks where tainted data can reach to them. 1,887 of them were

identi�ed as alerts because no security sanitization was detected.

The analysis time for each sample is about 180 seconds on average.

True Positive Evaluation. Given a large amount of raised alerts

produced by EmTaint, it is important to study howmany of them in-

dicate true positive. However, the overall evaluation of true-positive

367

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 5: Comparison with VSA on the same dataset

Dataset
MAY- NO- VSA EmTaint

ALIAS ALIAS TP TN TPR ACC TP TN TPR ACC

basic 67 27 46 26 68.7% 76.6% 61 27 91.0% 93.6.0%

�ow 26 29 21 29 80.8% 90.9% 26 29 100.0% 100.0%

context 73 43 49 43 67.1% 79.3% 71 35 97.3% 91.4%

Total 166 99 116 98 69.9% 80.8% 158 91 95.2% 94.0%

is labor intensive, because it requires reverse-engineering and man-

ual construction of a proof-of-concept (PoC) on real devices to

validate whether they are real bugs or not. Therefore, we randomly

selected a part of samples to estimate true positive rate. Speci�-

cally, we selected 10 physical devices and randomly sample 100

alerts out of 971 from these devices. Then, we identify an alert that

refers to a true positive if (1) it matches a known vulnerability or

(2) can be veri�ed by successfully crafting a PoC on the real device.

Table 4 shows that 86 out of 100 alerts refer to true positive, in

which 13 true positives veri�ed by known vulnerabilities and oth-

ers veri�ed via successfully constructed PoCs. This proves the high

true positive rate of EmTaint. For the rest of false-positive alerts,

we attribute them to inaccurate indirect call resolution, failures of

�nding security checks, fake alias relationship and taint sources.

N-day and 0-day Vulnerabilities. In addition to verifying alerts

through sampling as mentioned before, we have been working hard

to verify more alerts. We prioritize alerts related to real devices

that we have access to. To con�rm 0-day vulnerabilities, we tried

to craft PoCs against the latest �rmware versions of real devices.

The rule of identifying a vulnerability from multiple alerts is as

follows: alerts triggered by parameters from POST request of the

same URL interface at di�erent sinks should be identi�ed as one

vulnerability. The rule is inspired by our observation of n-day vul-

nerabilities found by EmTaint. Speci�cally, we identify 41 n-day

vulnerabilities by searching records from exploit-db [18] or MITRE

CVE [13], which correspond to 120 alerts. Table 3 in [37] list the

distribution of 41 n-day vulnerabilities among the public exposure

IDs. Note that one CVE ID may correspond to multiple alerts. For

example, CVE-2019-13278 refers to a unique command injection

vulnerability, which can be triggered at 33 di�erent sinks in the

target binary. Finally, we have con�rmed a total of 151 0-day vul-

nerabilities from 512 alerts. We reported the 151 vulnerabilities to

manufacturers, all of which have been �xed. The discovered 0-day

vulnerability include 38 command injection vulnerabilities and 113

bu�er over�ow vulnerabilities, 115 of which have been assigned

with CVE/PSV numbers. The vulnerability information including

relevant CVEs/PSVs is summarized in Table 5 in [37]. Since some

samples from our dataset are in older version, lots of alerts gen-

erated by EmTaint have been �xed in the latest version. We infer

that these vulnerabilities were found by the vendor themselves, and

no public detail is available. For example, EmTaint produced 119

alerts in NETGEAR R7800 v1.0.2.32, but we only veri�ed one 0-day

vulnerability in its latest version v1.0.2.68. By reverse-engineering

both samples, we found that many vulnerabilities were �xed by

replacing strcpy with strncpy.

In summary, EmTaint has found 151 0-day vulnerabilities

(115 CVE/PSV) and 41 n-day vulnerabilities on our evaluation

dataset. Meanwhile, EmTaint can �nd vulnerabilities with

high true-positive (86%).

4.2 E�ectiveness of SSE-Based Alias Analysis

To evaluate the e�ectiveness of SSE-based alias analysis, we select

VSA [4], the most advanced alias analysis technique for binaries as

the baseline. The selected test dataset, PTABEN [28], is a benchmark

used in SUPA [36], which is the state-of-the-art demand-driven alias

analysis technique for source code. We choose three test sets of C

program from PTABEN, including basic test set, context-sensitive

test set and �ow-sensitive test set. The three test sets we selected

covered all types of pointers. The rest of test sets are written in

other languages that are not relevant to the scope of our analysis.

We use Angr v9.0.5811 [2], which implemented VSA, to carry out

the comparison experiment.

Table 5 shown the results. The MAYALIAS(*p, *q) indicates that

pointers p and q are aliases, and the NOALIAS(*p, *q) indicates

that pointers p and q are not aliases. For 166 MAYALIAS and 99

NOALIAS, our technique correctly identi�ed 249 (the accuracy is

94.0%), while Angr-VSA correctly identi�ed 214 cases (the accuracy

is 80.8%). In particular, the positive rate of our technique (95.2%)

is much higher than that of Angr-VSA (69.9%). Eight MAYALIAS

were not correctly identi�ed by our technique for two reasons.

First, some �elds of complex structure array variables that allocated

in the stack cannot be accurately recovered by SSE. Second, our

algorithm tracks variables forward and backward on demand, and

the lack of contexts from caller function results in missing updates

to the store de�nition. The low accuracy of Angr-VSA is because

many variables are unconstrained symbolic values, and Angr-VSA

cannot calculate their concrete values. However, EmTaint can �nd

the alias relationship of symbolic values with SSE.

In summary, our proposed SSE-based alias analysis has both

higher accuracy (94.0%) and true positives (95.2%) in alias

analysis compared to VSA (80.8%, 69.9%) in PTABEN dataset.

4.3 Indirect Call Resolution with Alias Analysis

In this section, we evaluate the e�ectiveness and e�ciency of indi-

rect call resolution, and also evaluate the e�ectiveness and necessity

of indirect call resolution in discovering taint-style vulnerabilities.

Note that, the indirect call resolution procedure is armed with SSE-

based alias analysis, Thus, we take SSE-based alias analysis and

indirect call resolution as a whole for the evaluation.

E�ectiveness and E�ciency. Table 6 shows the results of indirect

call resolution on our evaluation dataset from Table 3. In Table 6,

All I-Calls denotes the total number of unresolved indirect callsite

in IDA pro. Resolved I-Calls denotes the the number of indirect

callsites that can be resolved by EmTaint. The result shows that Em-

Taint can resolve 96.6% indirect callsites (12,022 out of 12,446) and

the average analysis time per sample is about 96 seconds, which

proves both e�ectiveness and high e�ciency of indirection call

resolution module in EmTaint. In addition, we calculated the to-

tal number of target functions called at indirect callsites during

this process as shown in the column I-Call targets. In total, our

EmTaint added 14,920 target functions that are called indirectly,

which substantially improved taint-style vulnerability discovery.

Since we do not have the ground truth for indirect call targets, we

cannot accurately evaluate the failure cases. However, by reverse-

engineering some samples, we did �nd some missed targets because

some address-taken functions were not recognized.

368

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

Table 6: Results of indirect call resolution

ID Model
All Resolved I-Call % of resolved

Time (s)
I-Calls I-Calls targets I-Calls

1 Cisco RV320 638 620 794 97.2% 288.04

2 Cisco RV130 17 14 475 82.4% 27.83

3 D-Link DIR-825 82 80 239 97.5% 33.44

4 D-Link DAP-1860 27 21 327 77.8% 37.15

10 TRENDnet TEW632BRP 43 41 182 95.3% 20.40

11 TRENDnet TEW827RU 51 48 381 94.1% 25.56

12 NETGEAR R7800 17 14 692 82.3% 40.27

13 NETGEAR R8000 3 2 491 66.6% 40.35

29 TP-Link WR940NV4 389 309 653 79.4% 409.10

32 Tenda AC9V3.0 88 65 286 73.9% 204.55

Total (35)§ - 12,446 12,022 14,920 96.6% 95.55†

§: The row labelled “Total” shows aggregated results for 35 samples. Due to page limit, we only list
10 representative samples in the table. The other 25 samples can be found in Table 6 in [37]. †:
The average execution time per sample.

E�ectiveness in Finding Vulnerabilities. To evaluate the e�ec-

tiveness of indirect call resolution in �nding vulnerabilities, we

conduct the comparison with and without indirect call resolution

on our dataset. Due to page limit, we show the results of 10 rep-

resentative samples with real devices in Table 7 in [37]. Here we

use four metrics to demonstrate the e�ectiveness: the number of

covered basic blocks, tainted basic blocks, tainted sinks, and gener-

ated alerts. We can see that the �rst three metrics has increased a

lot by applying indirect call resolution. That means that indirect

call resolution enables EmTaint to propagate the tainted data to

more functions and variables, and arrive more unsafe sinks. Fur-

thermore, EmTaint with indirect call resolution can �nd 763 more

alerts, which correspond to 131 real vulnerabilities. We also study

the e�ectiveness of indirect call resolution on di�erent samples.

The results show that EmTaint can help generate a number of new

alerts in most cases. A special case named TEW827RU does not

show improvement on alerts when applying indirect call resolution

to it. The reason is that the propagation of tainted data from source

to sink does not involve any indirect calls in this sample.

Necessity in Finding Vulnerabilities. To evaluate necessity of

indirect call resolution, we manually analyzed the 162 real vulnera-

bilities (11 n-day and 151 0-day) in the 10 samples. Among them,

the triggering path of 131 vulnerabilities involves indirect calls,

which prove the necessity of applying indirect call resolution to

�nd vulnerabilities in Linux-based embedded �rmware.

In summary, EmTaint can resolve the indirect call both e�ec-

tively (96.6% success rate) and e�ciently (96s for each sample

on average) on dataset. Moreover, we also demonstrate the ef-

fectiveness and necessity of indirect call resolution for �nding

vulnerabilities in Linux-based embedded �rmware.

4.4 Comparison with KARONTE and SaTC

Three works are closely related to ours, including CodeSonar [20],

KARONTE [30] and SaTC [7]. However, CodeSonar is a commer-

cial product of GrammaTech and we were unable to use it in our

evaluation. KARONTE and SaTC are both open-sourced and they

perform taint analysis to detect the taint-style vulnerability in em-

bedded �rmware. Due to the very similar scope, we reused the

dataset [23, 32] released by KARONTE [30] and SaTC [7], which

includes 49 �rmware samples from 4 embedded vendors (i.e., NET-

GEAR, D-Link, TP-Link and Tenda). These datasets describe the

number of alerts and the number of true positives.

Table 7 shows the results. To be fair, we adopt the same de�nition

of true positive in KARONTE (cf. §X.D in [30]). Speci�cally, an

alert is a true positive if the tainted data that reaches the sink is

provided by the user. This applies to SaTC too. KARONTE took

approximately 451 hours to produce 74 alerts, among which 46 were

true positives; SaTC took approximately 459 hours to produce 2,084

alerts, amongwhich 683were true positives; EmTaint reported 1,583

alerts in less than 4 hours, 1,518 of which were true positives. The

result shows that EmTaint can �nd more true positives in less time

than KARONTE and SaTC. It is worth noting that our performance

improvement to theirs is in orders of magnitude (3+ hours vs 400+

hours). Moreover, our tool found 22 0-day vulnerabilities in the

already extensively tested samples.

Apart from the lack of indirect call resolution and less accurate

alias analysis, we found that KARONTE and SaTC frequently raise

false alerts because of the incorrectly speci�ed taint sources. Specif-

ically, due to the path explosion problem of symbolic execution,

they cannot directly use the common taint sources such as recv

function. Instead, to shorten the path from the sources to sinks,

KARONTE infers the taint source by using a preset list of network-

encoding strings (e.g., “soap” or “HTTP”), and SaTC infers the taint

sources by the keywords shared between the front-end �les and

the back-end programs. When these keywords are unrelated to

user inputs, false positives occur. In contrast, EmTaint starts taint

analysis directly from real sources (e.g., recv function), which helps

us achieve much higher true positive rates.

In summary, EmTaint can produce true alerts with higher

accuracy (96%) in less time (less than 4 hour) compared with

KARONTE (62%, 451 hours) and SaTC (33%, 459 hours) on

the same dataset. Moreover, EmTaint can �nd 22 more 0-day

vulnerabilities compared with them.

5 DISCUSSION

Comparison with Existing Work. First, we compared SSE to

existing work that use access path to implement �eld-sensitive

analyses [3, 8, 34]. All these related work are for source code, not

binary program. In the source code, all variables and �elds have

clear symbolic names, making it ideal for representing a memory

access through a local variable followed by a sequence of �eld

accesses (e.g., G .~.I). However, binary programs lose symbol names,

data types, and data structure information of variables, whichmakes

it di�cult to use access path directly in binary analysis. For example,

for the ARM instructions "ADD R2, R0, 0x20; ADD R3, R0, 0x48",

register R2 and R3 cannot be represented with access-path because

it is unknown whether they are pointer or integer. Moreover, it is

di�cult to identify R2+0x28 and R3 as aliases by access-path. To

address this issue, we propose SSE. In addition to describing an

indirect memory access like access-path, SSE is also used to recovery

data types (pointer or non-pointer), calculate o�set patterns of base

pointer (e.g., identify load(R2+0x28) and load(R3) as aliases), and

abstract recursive data structure and pointer increment structure

in the loop (Section 3.2.4). Second, we compared our on-demand

alias analyses to existing work [36, 42], which also use demand- or

client-driven analyses to improve e�ciency. These work compute

points-to queries on-demand, which aim to �nd all objects to which

the pointer points. However, our algorithm focuses on �nding the

369

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

Table 7: Comparison with KARONTE and SaTC on the same dataset.

Vendor Samples
KARONTE [30] SaTC [7] EmTaint

Alerts # of KTP KTP Rate Time Alerts # of KTP KTP Rate Time Alerts # of KTP KTP Rate Time

NETGEAR 17 36 23 63.9% 17:13 1,901 537 28.2% 16:47 849 849 100.0% 00:05

D-Link 9 24 15 62.5% 14:09 32 22 68.8% 01:57 299 234 78.3% 00:02

TP-Link 16 2 2 100.0% 01:30 7 2 28.6% 04:13 73 73 100.0% 00:05

Tenda 7 12 6 50.0% 01:01 144 122 84.7% 12:19 362 362 100.0% 00:05

Total 49 74 46 62.2% 451:06 2,084 683 32.8% 459:33 1,583 1,518 95.9% 03:38

For each tool, we report the total number of generated alerts, the number of true positives based on the de�nition in KARONTE (# of KTP), the true-positive rate (KTP Rate), and the average analysis time for each
sample (hh:mm). In the row labelled “Total”, we show the aggregated time to analyze all 49 samples in the column “Time”.

alias of the pointer itself on-demand, and does not focus on the

pointer’s target, which is more suitable for taint analysis.

Limitations. First, although SSE-based alias analysis outperforms

existing alias techniques in binary level, it still falls short when the

pointer involves bitwise operations or the o�set of the memory ac-

cess is not a constant. We will improve SSE to handle this situation

in the future work. Second, for vulnerability detection, EmTaint

generates 14% false positives. The reason is manifold. (1) EmTaint

misses some constraint checks that exist in customized library func-

tions. Speci�cally, our approach collects constraint checks in the

target program itself and standard library function, but misses se-

curity checks that do occur in library functions without summaries.

This problem can be mitigated by manual providing the function

summaries for customized library functions. (2) EmTaint incorrectly

recovers some indirect calls that do not exist, which leads to infeasi-

ble paths. This problem can be solve by applying dynamic analysis

to �lter the results (e.g., dynamic symbolic execution can be used

to solve the path constraints). We leave this as our future work. (3)

EmTaint uses the read function as a taint source. However, data

read from local �les actually cannot be manipulated by attackers.

Although EmTaint �lters obvious read operations from local �les,

there are cases that EmTaint cannot distinguish statically.

6 RELATED WORK

Alias Analysis. Alias analysis is a long-term research topic in

source code analysis [1, 8, 16, 35, 36, 42]. However, alias analysis in

binary is not as advanced as source code analysis. Debray et al. [15]

proposed an inter-procedural �ow-sensitive pointer alias analysis

for x86 executables, which is context-insensitive. Guo et al. [21]

presented the �rst context-sensitive points-to analysis for x86 as-

sembly code, which is only partially �ow-sensitive. Reps et al. [4, 31]

utilized value-set analysis (VSA) to identify pointer alias through

tracking memory accesses in x86 executables. However, VSA is

expensive and unpractical for real-world complex programs [43].

To adapt to complex binaries, BDA [43] proposed to utilize path

sampling to generate accurate data dependency. However, it does

not cover all path and is limited by path depth, which makes it un-

able to guarantee the robustness of pointer analysis. BinPointer [24]

utilizes an o�set-sensitive block memory model to implement inter-

procedural pointer analysis, which is �ow-insensitive on memory

locations and context-insensitive. We proposed a new alias analysis

technique based on SSE. To the best of our knowledge, this is the

�rst work that simultaneously achieves on-demand, �ow-, context-

and �eld-sensitive alias analysis for binary.

Vulnerability Detection Techniques for Embedded System.

For vulnerability detection of embedded system, there are both

static approaches [7, 9, 12, 14, 19, 25, 30, 33, 40] and dynamic ap-

proaches [6, 26, 27, 38, 44–46]. In static approaches, since our re-

search scope focuses on using taint analysis techniques to detect

vulnerabilities in Linux-based �rmware without source code, only

DTaint [9], KARONTE [30] and SaTC [7] can be applied to our

scenario. DTaint adopts pointer alias analysis to improve the data

�ow analysis and utilizes data structure similarity matching to con-

struct data dependence between functions invoked by indirect calls.

However, DTaint lacks accuracy and e�ciency in data �ow analysis.

KARONTE is a static analysis framework for embedded �rmware

that can discover vulnerabilities due to multi-binary interactions.

The authors achieve this goal by modeling and tracking multi-

binary interactions. SaTC also performs taint analysis to discover

vulnerabilities in embedded systems. It utilizes shared keywords

related to user input in the front-end and back-end to infer the

taint source. All the aforementioned works that detect taint-style

vulnerabilities did not perform indirect call resolution, which we

have demonstrated to be critical in §4.3.

7 CONCLUSION

In this work, we propose EmTaint, a novel static approach for accu-

rate and fast detection of taint-style vulnerabilities in embedded

�rmware. The key techniques in EmTaint is SSE-based on-demand

alias analysis, which facilitates indirect call resolution and accu-

rate taint analysis. We implemented the prototype of EmTaint and

evaluated it against 35 real-world embedded �rmware samples

from six popular vendors. The evaluation result shows that Em-

Taint discovered at least 192 vulnerabilities, including 41 n-day

vulnerabilities and 151 0-day vulnerabilities. At least 115 CVE/PSV

numbers have been allocated from a subset of the reported vulner-

abilities at the time of writing. Compared to state-of-the-art tools

such as KARONTE and SaTC, EmTaint found signi�cantly more

vulnerabilities on the same dataset with high accuracy in less time.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable comments

to improve our paper. This work was partially supported by Na-

tional Key R&D Program of China (No. 2022YFB3103904), NSF CNS-

2019340, NSF ECCS-2140175, a grant from Cisco Research, National

Natural Science Foundation of China (No. 62072451, 92267105),

Guangdong Special Support Plan (No. 2021TQ06X990), and Shen-

zhen Basic Research Program (No. JCYJ20200109115418592 and

JCYJ20220818101610023).

DATA-AVAILABILITY STATEMENT

All tools and detailed instructions to reproduce our study are openly

available from Zenodo [17].

370

ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA Kai Cheng, Yaowen Zheng, Tao Liu, Le Guan, Peng Liu, Hong Li, Hongsong Zhu, Kejiang Ye, and Limin Sun

REFERENCES
[1] Lars Ole Andersen. 1994. Program analysis and specialization for the C program-

ming language. Ph. D. Dissertation. Citeseer.
[2] Angr 2023. Next-generation binary analysis framework. Retrieved May 22, 2023

from https://github.com/angr/angr
[3] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps. SIGPLAN Not. 49, 6 (jun 2014), 259–269.
https://doi.org/10.1145/2666356.2594299

[4] Gogul Balakrishnan and Thomas Reps. 2010. WYSINWYX: What You See is Not
What You EXecute. ACM Trans. Program. Lang. Syst. 32, 6, Article 23 (aug 2010),
84 pages. https://doi.org/10.1145/1749608.1749612

[5] Bertrand Meyer 2019. Soundness and Completeness: De�ned With Precision.
Retrieved May 22, 2023 from https://cacm.acm.org/blogs/blog-cacm/236068-
soundness-and-completeness-de�ned-with-precision/fulltext

[6] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through App-
based Fuzzing. In NDSS. http://dx.doi.org/10.14722/ndss.2018.23159

[7] Libo Chen, Yanhao Wang, Quanpu Cai, Yunfan Zhan, Hong Hu, Jiaqi Linghu,
Qinsheng Hou, Chao Zhang, Haixin Duan, and Zhi Xue. 2021. Sharing More and
Checking Less: Leveraging Common Input Keywords to Detect Bugs in Embedded
Systems. In 30th USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 303–319.
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-libo

[8] Ben-Chung Cheng and Wen-Mei W. Hwu. 2000. Modular Interprocedural Pointer
Analysis Using Access Paths: Design, Implementation, and Evaluation. SIGPLAN
Not. 35, 5 (may 2000), 57–69. https://doi.org/10.1145/358438.349311

[9] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng, Limin Sun, and
Zhenkai Liang. 2018. DTaint: Detecting the Taint-Style Vulnerability in Embedded
Device Firmware. In 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2018, Luxembourg City, Luxembourg, June 25-28, 2018.
IEEE Computer Society, 430–441. https://doi.org/10.1109/DSN.2018.00052

[10] Claripy 2023. The API documentation provided by Claripy. Retrieved May 22,
2023 from https://docs.angr.io/projects/claripy/en/latest/api.html

[11] CLE 2023. A python module for loading binaries. Retrieved May 22, 2023 from
https://github.com/angr/cle

[12] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. 2018. Inception:
System-Wide Security Testing of Real-World Embedded Systems Software. In 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018, William Enck and Adrienne Porter Felt (Eds.). USENIX Association,
309–326. https://www.usenix.org/conference/usenixsecurity18/presentation/
corteggiani

[13] CVE 2023. Common vulnerabilities and exposures. Retrieved May 22, 2023 from
https://cve.mitre.org/

[14] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013.
FIE on Firmware: Finding Vulnerabilities in Embedded Systems Using Symbolic
Execution. In Proceedings of the 22th USENIX Security Symposium, Washington,
DC, USA, August 14-16, 2013, Samuel T. King (Ed.). USENIX Association, 463–
478. https://www.usenix.org/conference/usenixsecurity13/technical-sessions/
paper/davidson

[15] Saumya K. Debray, Robert Muth, and Matthew Weippert. 1998. Alias Analysis
of Executable Code. In POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, CA, USA, January
19-21, 1998, David B. MacQueen and Luca Cardelli (Eds.). ACM, 12–24. https:
//doi.org/10.1145/268946.268948

[16] Alain Deutsch. 1994. Interprocedural May-Alias Analysis for Pointers: Beyond
k-limiting. In Proceedings of the ACM SIGPLAN’94 Conference on Programming
Language Design and Implementation (PLDI), Orlando, Florida, USA, June 20-24,
1994, Vivek Sarkar, Barbara G. Ryder, and Mary Lou So�a (Eds.). ACM, 230–241.
https://doi.org/10.1145/178243.178263

[17] EmTaint 2023. Reproduction Package for Article ‘Detecting Vulnerabilities in Linux-
based Embedded Firmware with SSE-based On-demand Alias Analysis’. Retrieved
May 27, 2023 from https://doi.org/10.5281/zenodo.7976968

[18] EXPLOIT DATABASE 2023. Exploit database of the website. Retrieved May 22,
2023 from https://www.exploit-db.com/

[19] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018. VulSeeker:
a semantic learning based vulnerability seeker for cross-platform binary. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, Marianne Huchard,
Christian Kästner, and Gordon Fraser (Eds.). ACM, 896–899. https://doi.org/10.
1145/3238147.3240480

[20] Grammatech 2023. A source code and binary code static analysis tool. Retrieved
May 22, 2023 from https://www.grammatech.com/our-products/codesonar/

[21] Bolei Guo, Matthew J. Bridges, Spyridon Triantafyllis, Guilherme Ottoni,
Easwaran Raman, and David I. August. 2005. Practical and Accurate Low-Level

Pointer Analysis. In 3nd IEEE / ACM International Symposium on Code Genera-
tion and Optimization (CGO 2005), 20-23 March 2005, San Jose, CA, USA. IEEE
Computer Society, 291–302. https://doi.org/10.1109/CGO.2005.27

[22] IDA Pro 2023. A powerful disassembler. Retrieved May 22, 2023 from https:
//www.hex-rays.com/ida-pro/

[23] Karonte 2020. The experimental dataset used by tool Karonte. Retrieved May 22,
2023 from https://github.com/ucsb-seclab/karonte#dataset

[24] Sun Hyoung Kim, Dongrui Zeng, Cong Sun, and Gang Tan. 2022. BinPointer:
towards precise, sound, and scalable binary-level pointer analysis. In CC ’22: 31st
ACM SIGPLAN International Conference on Compiler Construction, Seoul, South
Korea, April 2 - 3, 2022, Bernhard Egger and Aaron Smith (Eds.). ACM, 169–180.
https://doi.org/10.1145/3497776.3517776

[25] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei
Zou. 2018. UDi�: cross-version binary code similarity detection with DNN. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering, ASE 2018, Montpellier, France, September 3-7, 2018, Marianne Huchard,
Christian Kästner, and Gordon Fraser (Eds.). ACM, 667–678. https://doi.org/10.
1145/3238147.3238199

[26] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide Balzarotti. 2018.
Avatar2: A multi-target orchestration platform. In Proc. Workshop Binary Anal.
Res.(Colocated NDSS Symp.), Vol. 18. 1–11.

[27] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and Davide
Balzarotti. 2018. What You Corrupt Is Not What You Crash: Challenges in
Fuzzing Embedded Devices. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018.
The Internet Society. http://dx.doi.org/10.14722/ndss.2018.23166

[28] PTABEN 2022. A micro-benchmark suite designed for validating various static
analysis algorithms. Retrieved May 22, 2023 from https://github.com/SVF-tools/
Test-Suite

[29] PyVEX 2023. A python module for VEX intermediate represenation. Retrieved
May 22, 2023 from https://github.com/angr/pyvex

[30] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea Continella,
Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. 2020. Karonte:
Detecting Insecure Multi-binary Interactions in Embedded Firmware. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 1544–1561. https://doi.org/10.1109/SP40000.2020.00036

[31] Thomas W. Reps and Gogul Balakrishnan. 2008. Improved Memory-Access Anal-
ysis for x86 Executables. In Compiler Construction, 17th International Conference,
CC 2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008. Proceedings
(Lecture Notes in Computer Science, Vol. 4959), Laurie J. Hendren (Ed.). Springer,
16–35. https://doi.org/10.1007/978-3-540-78791-4_2

[32] SaTC Dataset 2022. The experimental dataset used by tool SaTC. Retrieved
May 22, 2023 from https://drive.google.com/�le/d/1rOhjBlmv3jYmkKhTBJcqJ-
G56HoHBpVX/view

[33] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice - Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware. In 22nd Annual Network and Distributed
System Security Symposium, NDSS 2015, San Diego, California, USA, February 8-11,
2015. The Internet Society. http://dx.doi.org/10.14722/ndss.2015.23294

[34] Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, �ow-, and �eld-
sensitive data-�ow analysis using synchronized Pushdown systems. Proc. ACM
Program. Lang. 3, POPL (2019), 48:1–48:29. https://doi.org/10.1145/3290361

[35] Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. InConference
Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Papers Presented at the Symposium, St. Petersburg
Beach, Florida, USA, January 21-24, 1996, Hans-Juergen Boehm and Guy L. Steele
Jr. (Eds.). ACM Press, 32–41. https://doi.org/10.1145/237721.237727

[36] Yulei Sui and Jingling Xue. 2020. Value-Flow-Based Demand-Driven Pointer
Analysis for C and C++. IEEE Trans. Software Eng. 46, 8 (2020), 812–835. https:
//doi.org/10.1109/TSE.2018.2869336

[37] Supplementary material 2023. A supplementary material for paper ‘Detecting
Vulnerabilities in Linux-based Embedded Firmware with SSE-based On-demand
Alias Analysis’. Retrieved May 25, 2023 from https://drive.google.com/�le/d/
15K3Nbqm15sTwfXvMuiwhwBqvFTscZ1cy/view

[38] Zhiqiang Wang, Yuqing Zhang, and Qixu Liu. 2013. RPFuzzer: A Framework
for Discovering Router Protocols Vulnerabilities Based on Fuzzing. KSII Trans.
Internet Inf. Syst. 7, 8 (2013), 1989–2009. https://doi.org/10.3837/tiis.2013.08.014

[39] Richard Wartell, Yan Zhou, Kevin W. Hamlen, Murat Kantarcioglu, and Bhavani
Thuraisingham. 2011. Di�erentiating Code from Data in x86 Binaries. InMachine
Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part III (Lecture
Notes in Computer Science, Vol. 6913), Dimitrios Gunopulos, Thomas Hofmann,
Donato Malerba, and Michalis Vazirgiannis (Eds.). Springer, 522–536. https:
//doi.org/10.1007/978-3-642-23808-6_34

[40] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer

371

https://github.com/angr/angr
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/1749608.1749612
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-defined-with-precision/fulltext
https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-defined-with-precision/fulltext
http://dx.doi.org/10.14722/ndss.2018.23159
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-libo
https://doi.org/10.1145/358438.349311
https://doi.org/10.1109/DSN.2018.00052
https://docs.angr.io/projects/claripy/en/latest/api.html
https://github.com/angr/cle
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://www.usenix.org/conference/usenixsecurity18/presentation/corteggiani
https://cve.mitre.org/
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/davidson
https://doi.org/10.1145/268946.268948
https://doi.org/10.1145/268946.268948
https://doi.org/10.1145/178243.178263
https://doi.org/10.5281/zenodo.7976968
https://www.exploit-db.com/
https://doi.org/10.1145/3238147.3240480
https://doi.org/10.1145/3238147.3240480
https://www.grammatech.com/our-products/codesonar/
https://doi.org/10.1109/CGO.2005.27
https://www.hex-rays.com/ida-pro/
https://www.hex-rays.com/ida-pro/
https://github.com/ucsb-seclab/karonte#dataset
https://doi.org/10.1145/3497776.3517776
https://doi.org/10.1145/3238147.3238199
https://doi.org/10.1145/3238147.3238199
http://dx.doi.org/10.14722/ndss.2018.23166
https://github.com/SVF-tools/Test-Suite
https://github.com/SVF-tools/Test-Suite
https://github.com/angr/pyvex
https://doi.org/10.1109/SP40000.2020.00036
https://doi.org/10.1007/978-3-540-78791-4_2
https://drive.google.com/file/d/1rOhjBlmv3jYmkKhTBJcqJ-G56HoHBpVX/view
https://drive.google.com/file/d/1rOhjBlmv3jYmkKhTBJcqJ-G56HoHBpVX/view
http://dx.doi.org/10.14722/ndss.2015.23294
https://doi.org/10.1145/3290361
https://doi.org/10.1145/237721.237727
https://doi.org/10.1109/TSE.2018.2869336
https://doi.org/10.1109/TSE.2018.2869336
https://drive.google.com/file/d/15K3Nbqm15sTwfXvMuiwhwBqvFTscZ1cy/view
https://drive.google.com/file/d/15K3Nbqm15sTwfXvMuiwhwBqvFTscZ1cy/view
https://doi.org/10.3837/tiis.2013.08.014
https://doi.org/10.1007/978-3-642-23808-6_34
https://doi.org/10.1007/978-3-642-23808-6_34

Detecting Vulnerabilities in Linux-Based Embedded Firmware with SSE-Based On-Demand Alias Analysis ISSTA ’23, July 17–21, 2023, Sea�le, WA, USA

and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu
(Eds.). ACM, 363–376. https://doi.org/10.1145/3133956.3134018

[41] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck. 2015. Auto-
matic Inference of Search Patterns for Taint-Style Vulnerabilities. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015.
IEEE Computer Society, 797–812. https://doi.org/10.1109/SP.2015.54

[42] Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven context-
sensitive alias analysis for Java. In Proceedings of the 20th International Symposium
on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21,
2011, Matthew B. Dwyer and Frank Tip (Eds.). ACM, 155–165. https://doi.org/10.
1145/2001420.2001440

[43] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei, Yonghwi Kwon, and
Xiangyu Zhang. 2019. BDA: practical dependence analysis for binary ex-
ecutables by unbiased whole-program path sampling and per-path abstract
interpretation. Proc. ACM Program. Lang. 3, OOPSLA (2019), 137:1–137:31.
https://doi.org/10.1145/3360563

[44] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. 2019. FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware
via Augmented Process Emulation. In 28th USENIX Security Symposium, USENIX
Security 2019, Santa Clara, CA, USA, August 14-16, 2019, Nadia Heninger and
Patrick Traynor (Eds.). USENIX Association, 1099–1114. https://www.usenix.
org/conference/usenixsecurity19/presentation/zheng

[45] Yaowen Zheng, Yuekang Li, Cen Zhang, Hongsong Zhu, Yang Liu, and Limin
Sun. 2022. E�cient greybox fuzzing of applications in Linux-based IoT devices
via enhanced user-mode emulation. In ISSTA ’22: 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, Virtual Event, South Korea, July
18 - 22, 2022, Sukyoung Ryu and Yannis Smaragdakis (Eds.). ACM, 417–428.
https://doi.org/10.1145/3533767.3534414

[46] Yaowen Zheng, Zhanwei Song, Yuyan Sun, Kai Cheng, Hongsong Zhu, and Limin
Sun. 2019. An E�cient Greybox Fuzzing Scheme for Linux-based IoT Programs
Through Binary Static Analysis. In 38th IEEE International Performance Computing
and Communications Conference, IPCCC 2019, London, United Kingdom, October
29-31, 2019. IEEE, 1–8. https://doi.org/10.1109/IPCCC47392.2019.8958740

372

https://doi.org/10.1145/3133956.3134018
https://doi.org/10.1109/SP.2015.54
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/3360563
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://www.usenix.org/conference/usenixsecurity19/presentation/zheng
https://doi.org/10.1145/3533767.3534414
https://doi.org/10.1109/IPCCC47392.2019.8958740

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Taint-Style Vulnerability Detection
	2.2 Motivating Example
	2.3 Challenges and Key Idea

	3 Methodology
	3.1 Overview
	3.2 SSE-Based On-Demand Alias Analysis
	3.3 Indirect Call Resolution

	4 Implementation and Evaluation
	4.1 Vulnerability Discovery
	4.2 Effectiveness of SSE-Based Alias Analysis
	4.3 Indirect Call Resolution with Alias Analysis
	4.4 Comparison with KARONTE and SaTC

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

