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Abstract—With the rapid expansion of the Internet of Things,
a vast number of microcontroller-based IoT devices are now
susceptible to attacks through the Internet. Vulnerabilities within
the firmware are one of the most important attack surfaces.
Fuzzing has emerged as one of the most effective techniques for
identifying such vulnerabilities. However, when applied to IoT
firmware, several challenges arise, including: (1) the inability
of firmware to execute properly in the absence of peripherals,
(2) the lack of support for exploring input spaces of multiple
peripherals, (3) difficulties in instrumenting and gathering feed-
back, and (4) the absence of a fault detection mechanism. To
address these challenges, we have developed and implemented
an innovative peripheral-independent hybrid fuzzing tool called
FirmHybirdFuzzer. This tool enables testing of microcontroller-
based firmware without reliance on specific peripheral hardware.
First, a unified virtual peripheral was integrated to model the be-
haviors of various peripherals, thus enabling the physical devices-
agnostic firmware execution. Then, a hybrid event generation
approach was used to generate inputs for different peripheral
accesses. Furthermore, two-level coverage feedback was collected
to optimize the testcase generation. Finally, a plugin-based
fault detection mechanism was implemented to identify typical
memory corruption vulnerabilities. A Large-scale experimental
evaluation has been performed to show FirmHybirdFuzzer’s
effectiveness and efficiency.

Index Terms—Internet of Things, Firmware, Hybrid Fuzzing,
Vulnerability Detection

I. INTRODUCTION

With the rapid development of communication technolo-
gies such as NB-IoT [1] and 5G [2], more and more IoT
devices (e.g., IP cameras, smart routers) have been deployed in
the security-critical areas including intelligent transportation,
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smart homes, smart grids and so on. Nowadays, our cyberspace
is dominated by billions of low-cost computing nodes. Accord-
ing to the prediction of GSMA 1, the number of IoT devices
connected to the Internet will reach 25.2 billion in 2025. When
these IoT devices are exposed to attackers via Internet, serious
consequences could happen due to loose protection such as
missing memory management unit (MMU).

Firmware is the program running on the IoT devices, which
is responsible for controlling the hardware, interacting with
peripherals, monitoring status, collecting data, and so on.
The consequences of a vulnerability in the firmware could
be devastating. For example, the Google project zero team
disclosed vulnerabilities in the system on a chip (SoC) of
Broadcom’s wifi, which allows attackers to gain control of
a smartphone’s main application processor [3]. FreeRTOS is
the leading operating system for Amazon’s IoT devices, 13
critical vulnerabilities were reported within it, which put a
wide range of devices at risk of compromise [4]. Thus, it is
essential to detect vulnerabilities within firmware for ensuring
the security of IoT devices.

Fuzzing [5], [6], is one of the most effective approaches
to exploring security defects in desktop and mobile software
systems. Especially, the feedback-based greybox fuzzing [7]–
[9] have been widely adopted by many industries including
Google [10] and Microsoft [11] to improve the reliability
and security of their software products. The core idea of
fuzzing is to feed massive inputs to the target program via
the interaction interfaces so as to trigger unintended behaviors
(e.g., crashes). A lot of techniques such as static analysis
[12]–[14], taint analysis [15]–[17], symbolic execution [18]–
[21] and machine learning [22]–[25] have been integrated to
improve the effectiveness and efficiency of fuzzing.

Different from traditional desktop software and mobile
application, IoT firmware has some unique features.

• Diverse underlying environments. The firmware is
usually highly customized to suit the underlying envi-
ronments, which include the different operating systems
(e.g., Bare-metal, FreeRTOS) and various peripherals
(e.g., GPS, DSP, communication protocols).

• Peripherals based interaction. The main task of
firmware is usually located in an infinite loop. It continu-
ously interacts with the outside through various peripher-
als, which are hardware components that handle sensors,
actuators, and communication protocols.

1https://www.gsma.com/
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Challenges. These unique features of IoT firmware bring
new challenges to fuzzing-based vulnerability detection [26],
and existing methods are far from mature.

C1: Inability of firmware execution without hardware
dependence. Executing firmware is the premise of using
the fuzzing approach. However, it is difficult due to the
diverse underlying operating systems and various interactive
peripherals. Some works utilize emulators such as QEMU
[27] or PANDA [28] to run a firmware binary. For instance,
FIRMADYNE [29] enables the QEMU’s full system emulation
of firmware using a built-in abstraction of a modified Linux
kernel. This approach has been utilized to perform dynamic
analysis of Linux-based firmware [30]. However, this “built-
in kernel abstraction” approach will not be feasible when
dynamically analyzing microcontroller-based (MCU) firmware
which usually runs on a lightweight real-time operating system
(RTOS) or a bare-metal system. One reason is that there are
many kinds of RTOSes, and the built-in abstraction provided
by one kind of RTOS is often incompatible with another
RTOS. Another reason it is infeasible is that the existing
mainstream emulator, QEMU, could only emulate the core
peripherals (e.g., NVIC, SysTick) of microcontrollers. When
accessing unknown peripherals, QEMU will become para-
lyzed. To deal with this issue, some works such as avatar [31]
[32] emulate firmware execution by leveraging a real device
or implementing a specific piece of “acting as a peripheral”
software for each unknown peripheral [26]. But physically
acquiring real devices or manually implementing software-
version peripherals are expensive. SymDrive [33] is a system
to test Linux and FreeBSD drivers without devices based on
symbolic execution engine (i.e., S2E). Our previous work
Laelaps [34] models the legitimate behaviors of unknown
peripherals using symbolic execution, but aims to finish the
peripheral initialization along one promising path. DICE [35]
proposes a drop-in solution for firmware analyzers to emulate
DMA input channels. HALucinator [36] enables the re-hosting
and analysis of firmware by providing generic implementations
of identified library functions in a full-system emulator. But,
it needs the source code of the corresponding HAL SDKs in
the first place, which is usually not available by the analyzers
from third parities.

C2: Nonsupport for exploring multiple peripheral input
spaces. The IoT firmware running on a device continuously
interacts with the environment through a variety of peripherals.
In contrast, the program-environment interfaces handled by
mainstream fuzzing approaches are a single stdin, file, or
network interface. For instance, blackbox fuzzing tools such as
Sulley [37], Peach [38] and boofuzz [39] support feeding in-
puts through a single network interface, while greybox fuzzing
tools like AFL [7] AFL++ [40] and Libfuzzer [8] could only
deal with a single stdin or file interface. However, the inter-
faces of the IoT firmware include the network communication
and various sensors such as proximity sensor, temperature
sensor and so on. In other words, the IoT firmware has multiple
input spaces for exploration, but the conventional fuzzers
could only support exploration of single input space. Besides,
the inputs associated with different peripherals could have

big differences in type, syntax, semantics, etc. None of the
existing fuzzing tools could handle them well, and it is difficult
to upgrade the existing fuzzing tools to support exploring
multiple input spaces without significant modification.

C3: Inability of instrumenting and collecting feedback to
guide fuzzing. The “feedback-based guidance and “genetic
optimization” are the keys of the greybox fuzzing technol-
ogy. It is best practice for x86 software to adopt a mix of
compile-time or run-time instrumentation to collect coverage
information of the executed input, therefore guiding fuzzing
to optimize the input generation using a genetic algorithm.
However, compile-time instrumentation requires the source
code which is not typically available for firmware within IoT
devices. Existing binary dynamic instrumentation tools, such
as Pin [41] and Valgrind [42], are closely tied to the target
operating system and CPU architecture. So far, none of the
existing binary instrumentation tools could support bare-metal
or RTOS firmware images [26]. That is why existing firmware
fuzzing works such as RPFuzzer [43] and IoTFuzzer [44] are
all black-box fuzzing techniques.

In addition, traditional fuzzing techniques rely on observ-
able crashes as immediate consequences of run-time faults.
The Linux- and Windows- based systems usually facilitate
various crash detection mechanisms that a fuzzing tool can be
leverage. These mechanisms can be triggered through software
instrumentation (e.g., stack canaries) or hardware protection
(e.g., segment fault). Unfortunately, these mechanisms are
rarely present (or limited) in microcontroller-based firmware,
resulting in lots of silent crashes [26]. Missing fault detection
mechanism greatly limits a fuzzing tool’s ability to detect
vulnerabilities. In order to alleviate the problem, RPFuzzer
[43] detects DoS and router reboot by watching CPU uti-
lization and checking system logs. IoTFuzzer [44] identifies
potential vulnerabilities by performing a liveness check. It
could identify if the system hangs, but can not report the types
and details of the detected vulnerability. Marius Muench [26]
presents a set of heuristics to detect memory corruption of
firmware, they are useful to a certain, but not systematic and
universal.

Our Work. We established a physical devices-agnostic
hybrid fuzzing tool for microcontroller-based IoT firmware. It
can test mainstream bare-metal and RTOS firmware binaries
without peripheral hardware dependence, and detect common
C/C++ vulnerabilities. The key solutions integrated in the
system to overcome the challenges aforementioned are as
follows.

• S1: A virtual peripheral component has been integrated
into the tool, allowing it to emulate the behaviors of vari-
ous peripherals. This ensures firmware execution without
being reliant on specific physical devices. (Section III-A)

• S2: A hybrid event generation method was used to gener-
ate inputs for different peripheral accesses. By combining
constraint-based and mutation-based generation method,
we can effectively explore the input spaces associated
with multiple peripherals. (Section III-B)

• S3: A two-level coverage feedback mechanism to opti-
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mize the generation of test cases. This enables compre-
hensive coverage of the firmware code and enhances the
effectiveness of the hybrid fuzzing. (Section III-C)

Furthermore, a fault detection mechanism was imple-
mented and integrated to identify common vulnerabilities such
as stack/heap corruption, integer overflow and division by
zero.This modular approach enhances the tool’s ability to de-
tect and report vulnerabilities accurately. We performed large-
scale experimental evaluation to demonstrate the effectiveness
and efficiency of proposed approach and tool.

Contributions. We summarized the key contributions as
follows.

• Approach. We proposed a physical devices-agnostic
hybrid fuzzing approach, which enabled the hybrid
fuzzing of microcontroller-based IoT firmware without
peripheral-hardware dependence.

• Tool. We implemented a multi-dimensional coverage
feedback guided hybrid fuzzing tool named FirmHy-
birdFuzzer, which was specifically designed to fuzz
microcontroller-based firmware for vulnerability detec-
tion.

• Evaluation. A large-scale experimental evaluation has
been performed to demonstrate the effectiveness and
efficiency of FirmHybirdFuzzer.

The remainder of this paper is organized as follows. Section
2 is the background. Section 3 gives the overview and detailed
description of the approach. Section 4 introduces the details
of implementation. Section 5 illustrates the processes and
results of the experimental evaluation. Section 6 presents and
discusses the related works. Section 7 is the conclusion.

II. BACKGROUND

A microcontroller(MCU)-based IoT device is a special
kind of embedded device with network connectivity. The
sensors are peripherals that collect environmental information,
while the actuators are peripherals that exert influence on
the physical-world objects. The microcontroller is a single
integrated circuit for executing the firmware. We focus on
the ARM Cortex-M based Microcontroller in this paper, Fig.
1 illustrates the architecture diagram of MCU devices. The
firmware is a program consisting of the bootstrap code, tasks,
libraries, the operating system, and interrupts service routines.
It is running in the processor core and interacts with peripher-
als via memory-mapped registers, interrupts, and DMA. The
firmware is responsible for collecting data from sensors and
network interfaces and generating commands to the actuators
and network interfaces.

To better understand the semantics of coverage feedback
collected in our approach in the following, we define the con-
cepts of firmware inter-procedure control flow graph (FICFG)
and firmware peripheral access dependence graph (FPADG)
as follows.

Definition 1: A FICFG is a directed graph G = (V,E),
where:

• A vertex vi ∈ V represents a basic block bi ∈ BI ∪
BT ∪ BL ∪ BR of the firmware image. Note that the

Fig. 1. Architecture diagram of MCU devices

BI , BT , BL, BR represent the sets of basic blocks of
bootstrap code, tasks, underlying operating system, and
interrupt service routines respectively.

• An edge (vi, vj) ∈ E represents the dynamic flow of
control ci ∈ Cbranch ∪ CfunCall ∪ CInterrupt from bi
to bj of the firmware image. The Cbranch, CfunCall,
CInterrupt represent controls from program branches,
function call and interrupt responses respectively.

Definition 2: An FPADG is a directed graph G = (P,E,→)
that specifies the dependence of different peripheral access
points at run-time, where:

• A vertex pi ∈ P represents a program point of accessing
the peripheral to read or write data.

• An event ei ∈ E represents the data-read at a peripheral
access point pi. Note that data-write is not included
because data-write will not affect the control flow of
the firmware execution and the transition of peripheral
accesses.

• An edge (pi, ei, pi+1) ∈→⊆ P ×E ×P is the transition
from pi to pi+1. Note that we write pi

ei→ pi+1 for a short
notation for (pi, ei, pi+1).

The execution of a task is event-driven. Hence, events
generated by non-network peripherals can be viewed as part of
the execution context of the task, while the events generated by
network peripherals can be viewed as network input. Formally,
we denote the events from network peripherals as Enetwork,
and events from other peripherals as Econtext. Furthermore,
we define the testcase for a firmware execution as follows.

Definition 3: A testcase t ∈ T for a firmware execution is
a sequence of events < e0, e1, ..., ei,..., en >, where ei ∈
Enetwork ∪ Econtext, 0 < i < n.

Example. An abstract of the firmware code fragment is
illustrated in Fig. 2 for a better understanding of the concepts
defined above. The instrument information in each basic block
is abstracted to retain the read and write events at peripheral
access points or function calls in Figure 2. The solid line
represents the Cbranch, and the dotted line represents the
CfunCall. Then, the FICFG and FPADG could be extracted
as shown in Figure 3 and Figure 4. Furthermore, one possible
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Basic Block A

Peripheal Access Point #P1
(read  a)

Basic Block C

Peripheal Access Point #P3
(read c)

Basic Block B

Peripheal Access Point #P2
(write b)

Function_call

Basic Block D

Peripheal Access Point #P4
(read d)

Basic Block E

Peripheal Access Point #P5
(read e)

Peripheal Access Point #P6
(write f)

Fig. 2. Abstract of Firmware Code Fragment

execution path of the firmware is < A,B,D,C,E,A, ... >,
and the testcase for the execution path is < a, b, d, c, e, ... >.

 A

C B

D E

Fig. 3. FICFG

P1

P2

P4

a1

P5

P3

d2

d1

c1

a2

P6e

c2

Fig. 4. FPADG

Problem Formalization. Hybrid fuzzing of microcontroller-
based firmware without peripheral hardware dependence refers
to executing the microcontroller-based firmware in a software-
based environment and generating effective testcase t ∈ T
by hybrid method (i.e., combining symbolic execution with
fuzzing), in order to explore more execution paths of firmware,
try to maximize the coverage of FICFG and FPADG, and to
detect vulnerabilities at the same time. Formally, the problem
could be formalized as follows.

HybridGeneration(T )→Maximize(FICFG)∧
Maximize(FPADG)∧
∃t ∈ T, TriggerBug(t).

Why does microcontroller-based firmware matter? We
target microcontroller-based firmware for two reasons. (1)
Microcontrollers have a huge user base. ARM Cortex-M
family is the dominating product in the microcontroller market.
It consists of a lot of cores including Cortex-M0Cortex-
M3, Cortex-M4, and so on. For each ARM core, the ARM
company defines the basic functionality and the memory map
for its core peripherals such as the interrupt controller (Nested
Vector Interrupt Controller, NVIC), system timer (SysTick),
and so on. Then, ARM sells the licenses of its cores as
intellectual property (IP). The participating manufacturers who
bought the IP will be free to customize their implementation

as long as it conforms to the standard of the ARM core.
Different manufacturers customize their products in different
ways, leading to a vast diversity of Cortex-M processors
with various other custom-made peripherals functions. ARM
Cortex-M processors map everything into a single address
space, including the ROM, RAM, and different peripherals
(i.e., memory-mapped IO). All these peripheral functions are
invoked by accessing the corresponding registers or memory
(i.e, Direct Memory Access, DMA).

The most remarkable difference between PC/mobile proces-
sors and Cortex-M processors is that Cortex-M processors do
not support Memory Management Unit (MMU). This means
the application code and the operating system code are min-
gled together in a flat memory address space. For this reason,
it does not support the popular Linux kernel. Thus, many other
ecosystems have been developed around it including Amazon
FreeRTOS [45], Arm MbedOS [46], and so on. Bare-metal and
RTOS-based firmware is the majority in the market of IoT
devices. In 2017, the proportion of microcontroller devices
reached 66% among all IoT devices 2. (2) Nowadays, there
is no physical device-agnostic greybox fuzzing tool that can
effectively execute and fuzz microcontroller-based firmware.

Why is hybrid fuzzing needed? Hybrid fuzzing [47] [20]
[18] is an advanced technique that combines the advantages
of fuzzing and symbolic execution. Fuzzing [48] [49] is one
of the most effective approaches to exploring vulnerabilities
in software systems. Especially, the coverage-based greybox
fuzzing [7] [8] have been widely adopted by industries such
as Google [9], Microsoft [11] and so on. It usually applies
lightweight instrumentation to collect coverage feedback to
optimize the input generation using a genetic algorithm [50]
[51] [16] [13], which has proven extremely successful in
detecting vulnerabilities of the traditional desktop software.
Fuzzing is good at generating massive inputs to explore the
code space efficiently. But it is hard to bypass some constraints
such as magic bytes comparison and so on. Besides, existing
greybox fuzzing tools can not generate massive effective
inputs for diverse peripherals interfaces without corresponding
valid seeds, which could be generated by symbolic execution
without manual specification. Symbolic execution [52] is a
program analysis technique based on simulation execution.
Its core idea is to use symbolic values, instead of concrete
values, as the input of the program. Together with constraint
solvers [53] [54], symbolic execution engine (e.g., KLEE [55],
Angr [56] and Sage [19]) is able to automatically generate
concrete inputs for a feasible execution path by solving the
corresponding path constraints. But the overhead of using a
solver is large and symbolic execution will be stuck into path
explosion problems when handling complex structures such as
loops. Thus, it will be a large cost to generate massive input
to explore code space by using symbolic execution in limited
testing resources, while fuzzing’s advantage is able to generate
a lot of inputs efficiently for exploration. By combining the
fuzzing and symbolic execution, hybrid fuzzing could generate
a lot of inputs to explore the code space of firmware in limited
testing time, generate valid input that leads the firmware to

2https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
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Fig. 5. Overview of Physical Devices-Agnostic Hybrid Fuzzing for IoT Firmware

execute along one specific path, and bypass some complex
constraints which are hard to fuzzing. Thus, hybrid fuzzing is
the best choice for achieving our goals.

III. APPROACH

The framework for the physical devices-agnostic hybrid
fuzzing of IoT firmware is depicted in Figure 5. The in-
puts to the framework consist of the IoT firmware image
and the corresponding fuzzing configuration. The fuzzing
configuration includes details such as the core profile (e.g.,
ARM Cortex-M3/4), ROM and RAM locations, and fuzzing
settings (e.g., fuzzing boundary, single/total execution time).
The outputs of the framework are the identified firmware
vulnerabilities.Unlike traditional fuzzing tools that focus on
fuzzing either user-space programs [7] [16] or kernel-space
drivers [57] [58] separately, our tool operates on the firmware
as a whole, encompassing both the application tasks and the
kernel. This approach allows for a more comprehensive testing
of the firmware. The key techniques of the approach include
symbolic peripheral-based execution, a symbolic peripheral-
based execution method was employed to enable firmware
execution in the absence of physical peripherals. hybrid event
generation, a constraint-based and mutation-based test case
generation method was used to generate inputs for different
peripheral accesses. It enables the exploration of various input
spaces associated with multiple peripherals. Multi-Feedback
Guidance, a two levels feedback guidance mechanism was
utilized to optimize the generation of test cases. Fault Detec-
tion Mechanism, a fault detection mechanism is implemented
to identify common firmware vulnerabilities, such as memory
corruption issues.

Intuitively, we take the abstract firmware code segment in
Fig.2 for an example to illustrate the procedure of hybrid
fuzzing of IoT firmware.

(1) The target firmware binary is executed in the mainstream
emulators such as QEMU [28] with full-system emulation
mode. We load ARM core peripheral into the system map,
and all the unimplemented memory regions are marked as
special memory. All the peripheral accesses to the special
memory by assembly instructions such as ldr and str are
intercepted at runtime and forwarded to the unified virtual
peripheral. The virtual peripheral models the behaviors of
various unknown peripherals of QEMU by feeding effective
value for each peripheral access. By this means, we enable
the firmware execution without any real peripheral hardware.
In Fig. 2, when the firmware execution in the emulator
reaches the peripheral access point #p1 in basic block A, the

firmware will read data from p1‘s seed queue and continue
execution, rather than paralyzed. The events in the seed queue
of peripherals are generated by the hybrid events generation
approach.

(2) The hybrid event generation leverages constraint-based
and mutation-based generation techniques to generate two
kinds of events. One is valid events that satisfy the syntax
of peripheral access, the other one is semi-valid events that
may trigger abnormal behaviors. The constraint-based gener-
ation (i.e., symbolic execution) generates events by collecting
executed path constraints and solving them using SMT solvers.
Mutation-based generation (i.e., fuzzing ) generates events by
mutating existing valid seeds with a sequence of mutation
operators. In Fig. 2, when the execution reaches a peripheral
access point such as #p1, the execution in QEMU will
suspend. An event from the corresponding seed queue of
the peripheral access point should be fed to the emulator
to continue its execution. If the length of the seed queue is
less than a limit, which is specified by configuration. The
execution state at the current moment in QEMU including
the status of registers and memory will be transferred to the
symbolic execution engine (i.e., Angr). By marking the input a
that peripheral read as symbolic, symbolic execution from the
current state is performed for a few steps to explore some
possible future paths. The steps of forward exploration is
configured by Forward Depth. Assume the symbolic execu-
tion is performed for two steps and collect some execution
paths such as p1 =< A,B,D >, p2 =< A,B,C > and
p3 =< A,C,E >. We will choose one path by three rules
listed in section 3.2.1, and invoke the solver to generate a
concrete value for a. The value will be put into the seed queue
and fed to the QEMU and continue the firmware execution
from the suspend state. Similarly, if the peripheral access point
is #p3, which is a function call (i.e., bl instruction) to receive
a packet from the network peripheral. The receive function
will be hooked and replaced by a callback function, which
reads a valid packet from the local file as seed for c. The seed
will be written into the buffer address of the receive function at
run-time. When the length of the seed queue for the peripheral
access point is larger than the limit, mutation-based generation
will be involved in the generation of the peripheral input. It
uses a sequence of mutation operators listed in section 3.2.2 to
modify existing seeds to generate more events. The scheduling
strategy (i.e., section 3.2.3) of constraint-based generation and
mutation-based generation will be adopted to determine which
event generation technique to use at the moment.

(3) When an event is executed, its performance will be
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evaluated. Two kinds of coverage feedback are collected to
evaluate the performance of the executed event during fuzzing
(i.e., section 4.3). They are the transition of the block to block
(i.e., BB2BB) and peripheral access point to peripheral access
point (i.e., PP2PP). This feedback is used to optimize the event
generation using a genetic algorithm [59]. If the executed seed
triggers a new BB2BB or PP2PP, we will mutate the seed
by applying a sequence of predefined mutation operators to
generate more seeds and store them in the seed queue of the
corresponding peripheral access point. Note that the reason
why we use PP2PP as a new coverage feedback to guide
fuzzing is that maximizing the peripheral access dependence
graph is good at exploring all the peripheral input spaces.
Besides, due to the interrupt-driven mechanism, the PP2PP-
based guidance may traverse all the interrupt scheduling
situations, which is good at exploring the behavior of firmware
execution.

(4) During the firmware execution in the emulator, a plugin-
based fault detection mechanism is implemented and deployed
to improve the sensitivity of security violations. It could iden-
tify common C/C++ implementation defeats by monitoring the
execution status including registers, memory read and write,
return address, and so on. A detailed vulnerability report
will be exported when a vulnerability is identified. More
specifically, three tracking plugins including stack tracking,
heap tracking, and instruction tracking (i.e., section 4) are
implemented to identify stack and heap corruption, integer-
overflow, and division-by-zero vulnerabilities.

A. S1: Virtual Peripheral-based Execution

The inability of firmware execution without real devices is
the biggest challenge to achieving physical devices-agnostic
firmware fuzzing. Mainstream emulators such QEMU are
limited by their inadequate support for previously unknown
peripherals. When the firmware accesses an unknown periph-
eral, the emulator will be paralyzed, because the emulator does
not know how to respond to it.

We propose a unified symbolic peripheral to model the be-
haviors of various unknown peripherals. In terms of behavior
emulation for unknown peripherals, we extend previous work
Laelaps [34] by supporting network peripherals and adding
mutation-based event generation that model the unconstrained
behavior. We use the unified virtual peripheral to interact
with the firmware executed in the emulator, and all the I/O
accesses to unknown peripherals are intercepted and forwarded
to the unified virtual peripheral. The unified virtual peripheral
will respond based on its emulation ability of peripheral
behaviors. By this means, we achieve firmware execution
without hardware dependence, which provides the basis for
physical-agnostic firmware hybrid fuzzing. More specially,
the unified virtual peripheral models three key behaviors of
various unknown peripherals.

Peripheral discovery. The virtual peripheral will respond
to the emulator when the processor accesses an unknown
memory region corresponding to the peripheral by the way
of direct memory access (DMA). This allows for peripheral

discovery if the process accesses the memory corresponding
to a peripheral.

I/O interaction. By interacting with peripheral read op-
erations and providing effective or ineffective responses, the
firmware execution can follow feasible execution paths includ-
ing the error handling part. Compared with Laelaps [34] that
could only handle context peripherals, We provide the support
of network peripherals such as ENET, WIFI, Smac, Bluetooth,
and so on. Note that data-write operations are ignored because
the data-write will not affect the control flow of the firmware
and the transition of peripheral accesses.

Interrupt injection. The unified symbolic peripheral sup-
ports injecting and delivering active interrupts to the emulator.
Based on the QEMU machine protocol, we added three new
QMP commands (i.e., active irqs, inject irq, and inject all
irqs) and implemented a python interface, which could be
used to inject randomly activated interrupts to QEMU. We
use the python interface to randomly deliver active inter-
rupts automatically. The simple design works fine for two
reasons. First, in a real execution, firmware only activates a
limited number of interrupts. Therefore, randomly delivering
unexpected interrupts will not introduce to much performance
penalty. Second, interrupt handlers can often gracefully deal
with unexpected events. Although additional code is executed,
it will not cause a great impact on firmware execution. Note
that we do not regard the interrupt as the fuzzing entry when
performing firmware fuzzing.

Different from previous work [26] that implements a pre-
cise software-based simulator for the corresponding peripheral
device, our unified virtual peripheral is a general model for
various peripherals. Its key functionality is to feed values for
peripheral accesses and to drive firmware to execute along
specific paths. Note that the symbolic peripheral may generate
values beyond the valid range of real peripheral devices. But
we argue that this unconstrained device behavior is acceptable
for exploring the path of firmware and detecting vulnerabil-
ities, especially in error handling code. Because sometimes
the firmware would be crashed when the peripheral device
provides an errant value in physical attacks [60].

B. S2: Hybrid Event Generation

The nature of multi-peripherals based interaction in IoT sys-
tem design invalidates the existing greybox fuzzing tools. Ex-
isting tools do not support the exploration of multi-peripheral
input spaces because they do not support exploring multiple
interactive interfaces. They are unable to generate effective
inputs for diverse peripherals because the inputs to different
peripherals could differ significantly in terms of type, syntax,
range, etc. To support multi-peripheral input spaces explo-
ration, we propose a hybrid input generation mechanism for
peripheral-based firmware fuzzing. The mechanism consists of
constraint-based and mutation-based generation techniques.

1) Constraint-based Generation.: The constraint-based
generation utilizes a symbolic execution engine (e.g., Angr) to
generate external input from peripherals. When the firmware
execution in QEMU accesses a memory region corresponding
to unknown peripherals, the QEMU will suspend. The current
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1 c n t 0 = ( u i n t 3 2 t ) ( base−>CNT & FTM CNT COUNT MASK) ;
2 d o s t u f f ( )
3 c n t 1 = ( u i n t 3 2 t ) ( base−>CNT & FTM CNT COUNT MASK) ;
4 i f ( ( c n t 1 − c n t 0 ) > 0xFF )
5 . . .

Listing 1. Code snippet using timer peripheral

state of QEMU including the memory and register information
will be transferred to the symbolic execution engine. Then,
symbolic execution is performed starting from the current state
to explore future paths. We choose one path according to the
heuristic-based path selection strategy and invoke an SMT
solver to generate the corresponding input by solving the path
constraints. The input will be stored in a seed queue dedicated
to each peripheral access point and the queue is fed to the
suspended QEMU and continue the firmware execution. We
summarize the key techniques of constraint-based generation
as follows.

Access-based symbolization. The core idea of symbolic
execution is to use symbolic values, instead of concrete values,
as the inputs of the program. We utilize a peripheral access-
based symbolization technique to insert symbol values, that
is we assign symbols for every peripheral access, even if
the peripheral access point has been visited before. This is
because of the volatile nature of peripheral memory, their
values will change non-deterministically. In this sense, we
assign new symbols spatially (i.e., different access points get
different symbols) and temporally (i.e., different times get
different symbols). Consider an example shown in Listing 1.
base→ CNT is a peripheral register that keeps an increasing
counter. Line 1 and line 2 read the current values. Although
they are accessing the same memory, since they accessed at
different times, we assign two different symbols. Otherwise,
line 5 can never be reached because subtracting a variable
from itself always gets zero.

Speculative symbolic execution. Speculative symbolic
execution technique [61] is adopted to reduce the overhead
of invoking a constraint solver. We do not invoke the solver
once we encounter a new branch. Instead, we allow the
analysts to configure context depth to specify the number
of branches the symbolic execution engine has to accumulate
before invoking the solver. The downside is that a larger
context depth leads more paths to be explored in symbolic
execution and thus consumes more time overhead. There are
three rules consisting of the heuristic-based path selection
algorithm.

• Rule 1: favoring deep path. We prefer to select the
path with the highest address due to it has a higher
chance to move forward quickly and deeply. This is based
on two key observations. First, programs are designed
to execute sequentially. Second, the booting code of
firmware typically initializes each peripheral one by one.
We design the rule because we tend to move forward and
deep quickly.

• Rule 2: prioritizing new path. We prioritize the un-
touched path in order to maximize coverage. We maintain

a list of previously executed basic blocks. By calculating
the similarity between the historical paths and each of the
explored paths for the future, we choose the candidate
path with the lowest similarity. The way to calculate the
similarity is based on the ratio of intersection to a union
of the future and historical paths.

• Rule 3: avoiding infinite loop. We choose the path based
on infinite loop elimination. This is because symbolic
execution will be stuck in path explosion due to an infinite
loop [62]. Instead of applying fixed-point theorems [63]
to identify an infinite loop, we compare the state ( e.g.,
registers and program counter) of current paths with that
explored before. If two states are the same, we regard the
current path as one with an infinite loop.
More specifically, we allow the analysis to specify a
parameter forward depth, which is the maximum number
of basic blocks that the symbolic execution engine can
advance from a branch along one path. Within for-
ward depth steps, a branch could lead to multiple paths.
If all of these paths have an infinite loop, this branch is
discarded. If one single path from the branch is selected,
we say it chooses the path based on the infinite loop
elimination.

2) Mutation-based Generation.: The mutation-based gener-
ation utilizes a sequence of mutation operators to modify exist-
ing seeds and generate new events. These mutation operators
are usually used by greybox fuzzing tools such as AFL and
LibFuzzer. When the firmware execution in QEMU reaches a
peripheral access point to read value, the existing valid seeds
will be mutated by applying mutation operators such as bit-
flips to generate new events. These new events are stored in the
seed queue of a corresponding peripheral access point and fed
to QEMU to continue its concrete execution. More specifically,
we summarize the techniques of mutation-based generation as
follows.

Peripheral-aware valid seed generation. The initial seed
that is used for subsequent mutation is usually valid with
correct syntax and semantics. It will provide a better basis
for mutation-based fuzzing. More specifically, for context
peripherals, we provide valid seeds by using a symbolic
execution technique. For network peripherals, it is hard for
symbolic execution to generate an input that satisfies the
packet format. Thus, We use the hook function to replace the
network function and read valid packets from the local files.

Peripheral-specific mutation capability. A set of mutation
operators are designed by considering the characteristics of
peripheral-based interaction. The key observation is that (1)
the peripheral access is achieved by reading from or writing
to memory regions corresponding to peripherals, (2) the value
types from most context peripherals are integers, and (3) the
value types from network peripherals are packets. Therefore,
we designed peripheral-specific mutation operators as follows.

• Bit Flip. It flips 1, 4, 8, 16, 32, 64, 128 bits of existing
seeds;

• Arithmetic. It adds or subtracts random integer values
from existing seeds.
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• Interesting. It inserts some interesting values into seeds
such as the fixed value used in condition expressions.

• Overwriting. It overwrites some blocks of existing seeds
by fixed content (e.g, header) at a specific field of
protocols.

3) Probability-based Scheduling: Generally, constraint-
based generation is good at generating events to drive firmware
execution along a specific path. A mutation-based generation
has advantages in generating diverse events that explore more
paths, including error handling code.

We prefer to use constraint-based generation first because
the firmware execution will paralyze at an early stage if we
use mutation-based generation with random initial seeds first.
The detailed scheduling process of hybrid event generation
is as follows: (1) If the length of the seed queue for the
corresponding peripheral is smaller than the manually specific
limit, then we use constraint-based generation (i.e. symbolic
execution) to generate a seed to execute. (2) If the length of
the seed queue for the corresponding peripheral is larger than
the manually specific limit, then the mutation-based generation
is involved. We begin to use the probability-based scheduling
strategy to adjust the usage of constraint-based generation and
mutation-based generation as follows.

More specifically, the transfer between constraint-based
generation and mutation-based generation is based on the man-
ually specified probability. A probability is set for the selection
of constraint-based generation. If we set the probability to
be 30%, then we have a 30% chance to choose constraint-
based generation when faced with the choice of the above
two generation methods. The detailed algorithm of the hybrid
event generation is illustrated in the following.

C. S3: Two Levels Feedback-based Guidance

Feedback guidance and genetic optimization are the under-
lying key innovation of the greybox fuzzing technology. The
inability of instrumenting and collecting feedback brings a big
obstacle to achieving greybox fuzzing for IoT firmware. That
is why existing firmware fuzzing works such as RPFuzzer [43]
and IoTFuzzer [44] are all black-box fuzzing techniques –
they can not collect the runtime coverage information to guide
fuzzing.

We overcome this issue by utilizing the indirection layer
provided by QEMU. Since the firmware is translated by
QEMU, we can easily obtain the runtime information during
firmware execution. This forms the basis for our approach to
dynamically collect feedback information, including executed
basic blocks, visited peripheral access points, etc. Different
from the AFL’s QEMU mode [7] that uses the single path
coverage as the feedback to guide fuzzing, we collect multi-
dimensional coverage feedbacks, i.e., the transitions of block-
to-block and peripheral-to-peripheral, to advance the hybrid
firmware fuzzing. The reason why we additionally use the
peripheral-to-peripheral coverage is that we hope to steer the
fuzzing toward new peripheral access points. Intuitively, a
new peripheral is only accessed after the previous peripheral
has been successfully initialized. By guiding the execution to

Algorithm 1: Hybrid Event Generation
Data: firmware binary b
Result: seed queues of peripherals S

1 Initialization;
2 foreach peripheral access point pc that b reaches in

QEMU do
3 state s → QEMU(b, pc);
4 suspend QEMU(s);
5 event fed e = null;
6 if sizeof(S[pc]) ≤ limit then
7 transfer(QEMU(s), Angr(s’));
8 path p = heuristic-based-path-selection (s’);
9 event e = SMT solver(p);

10 e → S[pc];
11 fed e = e;
12 else
13 if constraint-based generation then
14 transfer(QEMU(s), Angr(s’));
15 path p = heuristic-based-path-selection (s’);
16 event e = SMT solver(p);
17 e → S[pc];
18 fed e = e;
19 else
20 fed e = S[pc][0];

21 restart QEMU(s);
22 BB2BB, PP2BB = process(fed e);
23 if TriggerNew(BB2BB) or TriggerNew(PP2PP) then
24 eSet = mutate(fed e);
25 eSet → S[pc];
26 else
27 delete fed e from S[pc];

access new peripherals, we have a good chance to cover new
paths.

BB2BB Coverage. The transition of the block-to-block
(i.e., BB2BB) refers to the execution from one basic block
of the firmware to another. We use the entry address of a
basic block A as its unique identification, which is denoted
by ID(A). Furthermore, the transition from basic block A to
basic block B is uniquely represented by ID(A → B) =
(ID(A) � 1) ⊕ ID(B)). We track all the visited unique
BB2BBs at run-time because the number of visited unique
BB2BB is a direct coverage metric of FICFG. If a new
BB2BB is visited, a pair including its ID and hit information
< ID(BB2BB), Hit > will be stored into a shared bitmap.
Furthermore, if an event triggers a new BB2BB, we regard
it as interesting and will mutate it to generate more seeds by
applying mutation operators.

PP2PP Coverage The transition of peripheral to peripheral
(i.e., PP2PP) represents the execution from one peripheral ac-
cess point to another. We use the address of access instruction
(e.g., ldr and str) at the peripheral access point A as its unique
identification, which is denoted by PID(A). Then, the transition
from peripheral access point A to peripheral access point B is
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uniquely represented by a tuple of < PID(A), P ID(B) >.
We track all the unique PP2PP at run-time because it is a direct
metric to show the coverage of FPADG. All the visited unique
PP2PP are stored in a list. The list acts as a coverage map of
PP2PP. If an event triggers a new PP2PP, we will store the
new PP2PP into a list, we regard it as interesting and mutate
it to generate more events.

Coverage Feedback Guidance. The coverage feedback
based guidance is aimed to maximize the coverage of firmware
inter-procedural control flow graph and peripheral access
dependence graph. We achieve the goal by guide the hybrid
fuzzing to mutate on interesting seeds that trigger new BB2BB
or PP2PP and generate more effective seeds based on the
underlying genetic algorithm.

D. S4: Fault Detection Mechanism

Traditional fuzzing techniques rely on observable crashes as
immediate consequences of run-time faults. The Linux- and
Windows-based systems usually facilitate various crash detec-
tion mechanisms that a fuzzing tool can be leveraged. These
mechanisms can be triggered through software instrumentation
(e.g., stack canaries) or hardware protection (e.g., segment
fault). Unfortunately, these mechanisms are rarely present
in microcontroller-based firmware, resulting in lots of silent
crashes [26]. Missing fault detection mechanism greatly limits
a fuzzing tool’s ability to detect vulnerabilities. To address
this problem, we implemented a fault detection mechanism
for microcontroller-based firmware inspired by the heuristics
used to detect memory corruption in PANDA [26]. Because the
latest QEMU has better emulation capability for ARM Cortex-
M based devices, we ported the mechanism of PANDA into
the latest QEMU and extended it to support detecting more
vulnerabilities. More specifically, three tracking plugins are
designed and implemented as QEMU TCG plugins 3 in the
fault detection mechanism.

Stack Tracking. This tracking plugin is designed to identify
stack overflow and out-of-bound read and write vulnerabilities.
More specially, we monitor all the direct and indirect function
calls as well as the return instructions. We check if their return
addresses are overwritten. Furthermore, we track all the stack
frames of function calls and check if the contiguous memory
accesses cross corresponding stack frames.

Heap Tracking. This tracking plugin is designed to detect
both temporal and spatial heap-related bugs such as heap
overflow, use after free, double free, and so on. It achieves
its goal by evaluating the arguments and return values of
allocation and deallocation functions and bookkeeping the
location and sizes of heap objects. This allows for easily
detecting out-of-bounds memory accesses or access to a freed
object.

Instruction Tracking. This tracking plugin is designed to
detect integer overflow and division by zero vulnerabilities.
We track the execution state of each instruction and check
if the register value that acts as the operand of division

3https://github.com/guillon/qemu-plugins

instructions equals zero. Furthermore, We trace instructions
for all arithmetic operations (e.g., add) to see if the result is
outside the range of different integer types, thus detecting the
integer overflow vulnerability.

IV. IMPLEMENTATION

The hybrid fuzzing system for IoT firmware was imple-
mented based on our previous work Laelaps [34] and AFL
[7]. We integrated them into our system and add over 4.4K
lines of C code and 5K lines of python code. The details of
some key implementations are presented as follows.

I/O Interception. The I/O operations performed by
firmware accessing unknown peripherals are intercepted and
forwarded to a unified symbolic peripheral. We implemented
it based on Avatar2, which implements a remote memory
mechanism in which accesses to unmapped memory regions
in QEMU are forwarded to a python script. We modified the
python script as the symbolic peripheral with the ability of the
hybrid event generation.

State Transfer. The avatar uses GDB interface to synchro-
nize the state of the register and memory, but it must be issued
when the target is stopped. In our scenario, we can not pred-
icate the point of firmware execution that accesses unknown
peripherals and set breakpoints beforehand. We overcame this
issue by invoking the QEMU internal function to suspend the
firmware execution when encountering unknown peripherals
on the fly. We implemented the on-the-fly state transfer by
exporting all RAM regions through shared memory-based
inter-process communication. A POSIX shared memory object
is created and bound to the RAM region using mmap when a
RAM region is created in QEMU. As a result, the symbolic
engine can directly address the firmware RAM by reading the
exported shared memory.

Interrupt Injection. We implemented the interrupt injection
based on the QEMU machine protocol (QMP), which is a
JSON-based protocol. We added three new QMP commands,
i.e., active-irqs, inject-irq, and inject-irq-all. They could be
used to get the current activated interrupt numbers, inject
an interrupt, and inject all the activated interrupt numbers.
To assert an interrupt, the added QMP command emulates a
hardware interrupt assertion by setting the corresponding bit
of the interrupt status pending register (ISPR).

Feedback Maintenance. We implemented the feedback
collection and maintenance mechanisms based on the shared
memory and the pickle, which is a python library for object
serialization. More specifically, a shared bitmap is created the
first time the IoT firmware image is executed. The bitmap is
used to store information about unique BB2BB transitions. We
implemented it based on AFL’s QEMU mode. In addition, a
shared list in Python is established at the same time, which
is used to store the unique peripheral access to peripheral
access transitions. And a Python map between each peripheral
access point and its seed queue information is created. This
feedback information is shared between QEMU and Python in
the shared memory.
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Open Source. The core source code of the physical devices-
agnostic hybrid fuzzing system for IoT firmware is online
available as follows.
https://github.com/stuartly/FirmHybridFuzz

V. EVALUATION

The section presents the evaluation of the proposed hybrid
fuzzing system for IoT firmware. Since there is no ready-
to-use benchmark to evaluate a fuzzing tool designed for
microcontroller-based firmware, we designed and built the first
set of firmware images suitable for assessing the capability of
a fuzzing tool. Then we design the evaluation questions and
discuss the detailed evaluation processes and results.

Benchmark. Inspired by LAVA [64], we established a
benchmark to evaluate microcontroller-based firmware fuzzing
tools. First, we selected firmware samples from the SDK
provided by the chip manufacturers. The samples are diverse in
terms of microcontrollers, underlying operating systems, and
integrated peripherals.

• Microcontroller. Four ARM Cortex-M based microcon-
trollers (i.e., NXP FRDM-K66F, NXP FRDM-KW41Z,
STM32 L475VG and STM32 Nucleo-L152RE) are se-
lected. The reason why we choose them is that we have
real development boards, which is helpful for us to debug
the firmware execution and validate the fuzzing results.

• Operating System. Three popular real-time operat-
ing systems (i.e., FreeRTOS [45], MbedOS [46], and
ChibiOS [65]) as well as Bare-metal are included. FreeR-
TOS is a market leader in the market of IoT devices.
MbedOS is the official embedded OS for ARM Cortex-
M based IoT devices. ChibiOS [65] is another compact
and efficient RTOS supporting multiple architectures,
especially for STM32 devices.

• Peripheral. More than 40 different peripherals are con-
sidered. They are ranging from basic sensors (e.g., ADC,
LED, UART, etc) to complex network interfaces such as
WIFI, BLE, and so on.

Then, we injected typical bugs into the firmware including
stack overflow, heap overflow, out-of-bounds r/w, null pointer
deference, use-after-free, double free, integer overflow, and
division by zero. More specially, the process of bug injection
is as follows. (1) Construct the inter-procedural call graph
of the whole firmware using IDA pro; (2) Extract the sub-
call graph of the main task;(3) Select some functions in the
sub-call graph; (4) Insert code fragments 4 containing typical
vulnerabilities at the entry block and other basic blocks of the
selected function’s source code. The script (i.e, BugInjecter.py)
used for bug injection are also online available. Finally, the
benchmark forms a ground truth, which could be used for the
evaluation of security analysis techniques of IoT firmware.

A. Evaluation Questions

Our goal is to establish a physical device-agnostic hybrid
fuzzing system for IoT firmware. We selected representative

4https://samate.nist.gov/SRD/around.php#juliet documents

firmware as the benchmark to perform our evaluation. The
evaluation was performed to demonstrate our approach’s effec-
tiveness and efficiency by answering the following questions.

• Q1: How is the effectiveness of the unified symbolic
peripheral in enabling hardware-independent firmware
execution?

• Q2: How is the effectiveness and efficiency of hybrid
Fuzzing in exploring firmware code space?

• Q3: How is the effectiveness and performance of fault
detection plugins in identifying vulnerabilities?

• Q4 : How is the comparison between FirmHybirdFuzzer
and related firmware fuzzing tools?

B. Evaluation Results

For large-scale deployment and evaluation, we performed
the evaluation on a virtual machine with 8 Intel(R) Xeon(R)
CPU E5-1650 v3 cores and 8GB memory, running a 64-bit
Ubuntu 16.04 LTS system.

1) Q1: Effectiveness of unified virtual peripheral in en-
abling hardware-independent firmware execution: To evaluate
the influence of the unified virtual peripheral on firmware
execution, we chose the firmware images with different mi-
crocontrollers, OSs, and peripherals as listed in Table I. For
each firmware image, we set the starting point of fuzzing at the
beginning of firmware execution, and we set the ending point
of fuzzing after device initialization and right before the main
task. We used the boolean value to evaluate the influence of
the unified virtual peripheral (VP) on firmware execution. That
is whether the unified virtual peripheral could successfully
enable the firmware execution to finish the device initialization
and perform the main task, rather than being paralyzed when
accessing unknown peripherals. We tested 62 firmware and
collected the results as illustrated in Table I.

The results indicate that diverse firmware images with
different OSs (i.e., Bare-metal, FreeRTOS, ChibiOS and
MbedOS ) and microcontroller (i.e., NXP FRDM-K66F,
NXP FRDM-KW41Z, STM32-L457VG and STM32-Nucleo-
L152RE) could be executed in our system with the help from
the unified virtual peripherals. Assisted by the constraint-
based event generation, the virtual peripheral could emulate
the I/O interaction of over 40 different peripherals ranging
from simple ADC to complex communication protocols such
as NFC, WIFI, and BLE. Furthermore, with the help of the
unified virtual peripheral, our system is able to drive over 88%
of the tested firmware images to finish device initialization and
to start performing the main tasks. All the firmware can not be
emulated and executed without our symbolic peripherals. Note
that our system provides interfaces for controlling the firmware
execution, these interfaces could be used to (1) bypass code,
(2) fix the known peripheral value, (3) overwrite function, and
(4) inject interrupt. Some manual analysis for the firmware
is needed before using these interfaces. We need to figure
out which function should be bypassed, which interrupt signal
should be specified in the config file, and so on. For example,
some firmware images (e.g., Lwip Httpsrv Rtos) depend on
some custom-made peripherals (e.g., CRC) to implement
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TABLE I
INFLUENCE OF UNIFIED VIRTUAL PERIPHERAL (VP) ON FIRMWARE

EXECUTION.
MCU OS Firmware Peripheral Size (KB) Init Init Mannual

without VP with VP Assist

NXP-K66F Bare-Metal

Drive Adc16 Polling ADC 999 N
√

×
Drive Cmp Polling CMP 995 ×

√
×

Drive Cmt CMT 999 ×
√

×
Drive Crc CRC 995 × × ×
Drive Dac basic DAC 995 ×

√
×

Drive Dspi interrupt DSPI 1018 × × ×
Drive Edma Sactter Gather EDMA 1086 × × ×
Drive Enet Txrx Transfer ENET 1029 ×

√
×

Drive Ewm EWM 1000 ×
√

×
Drive Flexcan Loopback FLEXCAN 1015 ×

√
×

Drive Ftm Timer FTM 1005 ×
√

×
Drive Gpio Input Interrupt GPIO 996 ×

√
×

Drive I2c Interrupt I2C 1012 × × ×
Drive Lptmr LPTMR 998 ×

√
×

Drive Lpuart polling LPURT 985 ×
√

×
Drive Mcg Pee Blpi MCG 979 ×

√
×

Drive Pflash PFLASH 1035 ×
√

×
Drive Pit PIT 997 ×

√
×

Drive Rnga Random RNGA 993 × × ×
Drive Rtc RTC 999 ×

√
×

Drive Sai Interrupt SAI 1156 ×
√

×
Drive Sdcard Polling SDCARD 1084 × × ×
Drive Sysmpu SYSMPU 1001 × × ×
Drive Wdog WDOG 996 ×

√
×

FreeRTOS
Rtos Sem Static SEM 357 ×

√
×

Rtos Swtimer SWTIMER 354 ×
√

×
Rtos Uart UART 344 ×

√
×

NXP-K66F

Bare-Metal

Lwip Dhcp Bm DHCP 445 ×
√ √

Lwip Httpsrv Bm HTTPS 526 ×
√ √

Lwip Iperf Bm IPERL 519 ×
√ √

Lwip Ping Bm PING 455 ×
√ √

Lwip Tcpecho Bm TCP 450 ×
√ √

Lwip Udpecho Bm UDP 446 ×
√ √

Lwip Httpssrv Mbedtls Bm TLS 1151 ×
√ √

FreeRTOS

Lwip Dhcp Rtos DHCP 589 ×
√ √

Lwip Httpsrv Rtos HTTPS 816 ×
√ √

Lwip Httpssrv Wolfssl Rtos SSL 1275 ×
√ √

Lwip Ping Rtos PING 652 ×
√ √

Lwip Tcpecho Rtos TCP 619 ×
√ √

Lwip Udpecho Rtos UDP 618 ×
√ √

NXP-KW41Z

Bare-Metal

Ble Blood Pressure Bm BLOOD PRESSURE 1302 ×
√ √

Ble Health Thermometer Bm THERMOMETER 1303 ×
√ √

Ble Wireless Power Ptu bm BLE 1366 ×
√ √

Ble Glucose Sensor Bm BLE 1310 ×
√ √

Ble Proximity Reporter Bm PROXIMITY, BLE 1304 ×
√ √

Smac Connectivity Test Bm SMAC 729 ×
√ √

Smac Wireless Messenger Bm SMAC 619 ×
√ √

FreeRTOS

Ble Cycling Power Rtos BLE 1360 ×
√ √

Ble Pluse Oximeter Rtos OXIMETER 1367 ×
√ √

Ble Heart Rate Rtos HEART RATE 1368 ×
√ √

Ble Temperature Rtos TEMPERATURE 1457 ×
√ √

Ble Wireless Uart Rtos UART 1441 ×
√ √

Smac Low Power Rtos SMAC 756 ×
√ √

Smac Wireless Uart Rtos SMAC 654 ×
√ √

STM32-L457VG Bare-Metal

NFC WriteTag NFC 306 ×
√ √

Nfc WriteToBleApp NFC 242 ×
√ √

Wifi Client Server WIFI 273 ×
√ √

Wifi Http Server WIFI 352 ×
√ √

Ble HeartRate BLE 18 ×
√ √

Ble P2P LEDButton BLE 15 ×
√ √

STM32-L152RE ChibiOS Qemu Uboot USART 550 ×
√

×
Mbed OS Hal Flash UART 920 ×

√
×

complex computations such as check-sum or cryptography,
the symbolic peripheral is fundamentally ineffective in han-
dling such sophisticated computation operations limited by the
ability of solver. We could migrate it by bypassing the code
of these complex operations by pre-provided configuration.
For some firmware (e.g., Ble Wireless Power Ptu Bm) that
receives network packets from outside, the data generated
using symbolic execution is hard to satisfy the grammar.
We address this problem by hooking to replace the network
function and read valid packets from the local file. In addition,
for some firmware (e.g., Smac Wireless Uart Rtos) that are
blocked in the idle task and waiting for a specific interrupt to
trigger the main task, we could inject specific interrupt events
through system interfaces.

Based on the above observations, we could positively an-
swer Q1 that the unified virtual peripheral could effec-
tively enable physical device-agnostic firmware execution.
Moreover, it could feed effective values for corresponding
peripheral accesses, and drive 55/62 firmware execution to
finish device initialization.

2) Q2: Effectiveness and efficiency of the hybrid event
generation in exploring firmware code space: To evaluate the
influence of hybrid event generation, we selected firmware
targets that interact with the network input and other context
peripherals in their main tasks. The influence is evaluated from
two aspects as follows.

Influence of mutating different peripherals. We evalu-
ated the influence of mutating different peripherals by three

settings, i.e., (1) mutating context and fixing network, (2)
mutating network and fixing context, and (3) mutating both
the context and network. For each setting, we fuzzed the main
task of each firmware for the same iterations, and collected
the coverage information and time cost as illustrated in Table
III.

In terms of the coverage, our results indicate that higher
coverage were obtained by mutating both the context and
network. This proves that exploration of multiple input spaces
benefit the coverage improvement. In addition, we found that
the behavior of some firmware images (e.g., NXP-FRDM-
KW41Z Bluetooth) has more dependence on the network,
while some others are greatly affected by the context. The
key insight is that context peripherals have important (even
bigger) influence than that of networks on the behaviors of
IoT firmware. In terms of the time overhead, the time cost
of only mutating input is four times as much as that of only
mutating the context. This is because mutating network input
relies on the hooking plugin that reads local files, which is
time-consuming. More importantly, fixing context based on
symbolic execution technique is expensive.

Influence of adopting different event generation scheduling
strategies. We evaluated the influence of three different
event-generation scheduling strategies as follows.

• Probability: 100% vs. 0%. The probability of using
constraint-based and mutation-based generation is 100%
vs. 0%.;

• Probability: 50% vs. 50%. The probability of using
constraint-based and mutation-based generation is 50%
vs. 50%.

• Probability: 10% vs. 90%. The probability of using
constraint-based and mutation-based generation is 10%
vs. 90%.

Note that the probability of using constraint-based and
mutation-based generation is 0% vs. 100% is not allowed. Be-
cause the symbolic execution (i.e., constraint-based approach)
is necessary, otherwise the firmware execution will be stuck in
the early stage. For each setting, we fuzzed the main task of
each firmware for the same iterations. The results including
the coverage information and time cost are shown in Table
III. The results indicate the time cost of only using constraint-
based generation is four times as much as that importing
90% mutation-based generation. With the probability of using
mutation-based generation increases from 50% to 90%, the
resulting coverage grows in terms of both BB2BB and PP2PP.

Based on the above observations, we could positively an-
swer Q2 that hybrid event generation can generate effective
values for exploration of multiple peripheral input spaces.
The increment of the probability of using mutation-based
generation contributes to coverage growth and performance
improvement.

3) Q3: Effectiveness and Efficiency of BB2BB and PP2PP
coverage feedback guidance on firmware coverage growth:
The coverage growth over time was used as the metric to
measure the impact of different coverage feedback guidance
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TABLE II
RESULTS OF MUTATING DIFFERENT PERIPHERALS. #ITER IS THE NUMBER OF THE MAIN TASK’S EXECUTION, T(S) IS THE TOTAL FUZZING TIME, #BB IS

THE NUMBER OF UNIQUE BB2BB, #PP IS THE NUMBER OF UNIQUE PP2PP.

Firmware #Iter Mutating Context Mutating Input Mutating Both
T(s) #BB #PP T(s) #BB #PP T(s) #BB #PP

Lwip Dhcp Bm 50 387.54 588 5 1215.9 672 5 425.88 685 5
Lwip Httpsrv Bm 50 446.83 477 5 1162.86 712 5 576.8 659 5
Lwip Iperf Bm 50 448.73 480 5 1252.85 619 5 463.41 632 5
Lwip Httpssrv Mbedtls Bm 50 663.5 791 5 4263.44 941 4 662.8 945 5
Lwip Httpsrv Rtos 50 324.54 1823 27 1951.19 1835 16 590.87 1922 30
Lwip Ping Freertos 50 396.57 2268 18 851.9 2117 3 222.61 2272 12
Lwip Httpssrv Mbedtls Rtos 50 1541.74 2148 38 7305.09 1993 17 1095.14 2307 38
Lwip Httpssrv Wolfssl Rtos 50 609.53 3062 25 1732.07 3087 16 478.16 3092 25
Ble Wireless Power Ptu Bm 50 969.43 659 7 3388.18 638 5 1039.9 665 7
Ble Proximity Reporter Bm 50 1132.07 659 7 3313.8 641 5 1322.31 667 7
Smac Connectivity Test Bm 50 626.28 295 23 2742.06 272 19 721.23 293 23
Smac Wireless Messenger Bm 50 658.18 322 26 2743.67 268 19 637.2 295 24
Ble Pluse Oximeter Rtos 50 3545.47 4375 145 21815.08 3847 140 3717.89 4353 148
Ble Temperature Rtos 50 3686.65 4302 144 17252 3851 137 2950.04 4411 150
Smac Low Power Rtos 50 250.65 584 8 506.47 564 7 260.6 607 8
Smac Wireless Uart Rtos 50 309.64 1221 25 907.76 892 19 349 1224 27
Nfc WriteTag 50 1916.23 1016 61 3207.55 821 48 1716.5 954 59
Nfc WriteToBleApp 50 882.75 778 57 1636.53 656 44 902.11 786 52
Wifi Client Server 50 1222.62 886 34 2282.74 658 16 1303.94 877 35
Wifi Http Server 50 1114.36 458 1 1490.98 430 24 1530.53 720 57

SUM: 21133.31 27192 666 81022.12 25514 554 20966.92 28366 722

TABLE III
RESULTS OF DIFFERENT EVENT GENERATION SCHEDULING STRATEGIES. #ITER IS THE NUMBER OF THE MAIN TASK’S EXECUTION, T(S) IS THE TOTAL

FUZZING TIME, #BB IS THE NUMBER OF UNIQUE BB2BB, #PP IS THE NUMBER OF UNIQUE PP2PP.

Firmware #Iter Probability:100% vs. 0%. Probability:10% vs. 90%. Probability:50% vs. 50%.
T(s) #BB #PP T(s) #BB #PP T(s) #BB #PP

Lwip Dhcp Bm 50 1208.83 588 5 425.88 685 5 944.42 672 5
Lwip Httpsrv Bm 50 1235.79 473 5 387.49 699 5 1051.70 684 5
Lwip Iperf Bm 50 1227.56 480 5 463.41 632 5 981.90 631 5
Lwip Httpssrv Mbedtls Bm 50 4518.65 788 4 662.80 945 5 2365.57 972 5
Lwip Httpsrv Rtos 50 2085.33 1757 16 590.87 1922 30 1404.51 1933 25
Lwip Ping Freertos 50 894.13 2190 3 222.61 2272 12 553.06 2233 14
Lwip Httpssrv Mbedtls Rtos 50 6667.07 2162 17 1095.14 2307 38 3771.88 2144 32
Lwip Httpssrv Wolfssl Rtos 50 1853.08 2944 16 423.16 3134 24 1317.20 3070 24
Ble Wireless Power Ptu Bm 50 2992.04 638 5 1039.90 665 7 2612.05 658 7
Ble Proximity Reporter Bm 50 2978.19 641 5 1322.31 667 7 2302.36 656 6
Smac Connectivity Test Bm 50 3017.28 278 19 721.23 293 23 1717.62 308 22
Smac Wireless Messenger Bm 50 2687.87 264 19 637.20 295 24 1678.37 300 22
Ble Pluse Oximeter Rtos 50 18635.81 4209 140 3717.89 4353 148 10902.28 4334 142
Ble Temperature Rtos 50 18516.39 4225 137 2950.04 4411 150 10918.98 4329 139
Smac Low Power Rtos 50 494.39 603 7 260.60 607 8 435.33 620 7
Smac Wireless Uart Rtos 50 869.15 996 19 349.00 1224 27 769.42 1059 32
Nfc WriteTag 50 10906.83 778 65 1716.50 954 59 2787.73 951 59
Nfc WriteToBleApp 50 1626.03 662 42 902.11 786 52 1339.55 770 54
Wifi Client Server 50 2240.31 654 16 1303.94 877 35 2110.10 820 34
Wifi Http Server 50 476.00 376 1 1530.53 720 57 1961.65 711 56

SUM: 85130.72 25706 546 20722.58 28448 721 51925.66 27855 695

strategies. More specifically, we fuzzed the main tasks of
each selected firmware for three hours under three settings,
i.e., (1) fuzzing with BB2BB guidance, (2) fuzzing with
PP2PP guidance, and (3) fuzzing with both BB2BB and
PP2PP guidance. The coverage growth for each firmware
under the three settings were collected. Due to the lim-
ited space, we show the results of six instances (i.e.,
Nfc-WriteBleApp, Nfc-WriteTag, Lwip-Httpsrv-Bm, Lwip-
Httpssrv-Mbedtls-rtos, Ble-Temperature-Rtos, STM32-L475-
NFC-WriteToBleApp, Httpssrv-mbedTLS-FreeRTOS, Lwip
Temperature-Sensor-Rtos, Ble-Blood-Presure) in Fig. 6. Please
refer to the website5 for more information.

The results indicate that PP2PP coverage feedback guidance
can facilitate the coverage growth effectively. The coverage

5https://sites.google.com/view/hybrid-fuzzing-firmware/home

results of combining PP2PP feedback performs better than
using only BB2BB guidance for all the firmware images. Note
that PP2PP guidance may perform better than the combined
version in some cases as shown in Fig.6. On one hand, it
indicates that the influence of PP2PP is larger than BB2BB
on guiding exploring new code space for firmware. It is rea-
sonable because firmware is interacting with the environment
based on peripheral interfaces. During limited time, guiding
firmware execution to new peripherals will contribute more
code coverage. On the other hand, new test cases generated
based on BB2BB coverage may not bring new code coverage
for firmware, but costing extra overhead, thats the reason
why PP2PP guidance may perform better than the combined
version. In general, the results prove that feedback based on
PP2PP is a good coverage feedback for fuzzing IoT firmware,
and validates our insight that steering the fuzzing towards new
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Fig. 6. Coverage growth of different feedback guidance

TABLE IV
INFLUENCE OF FAULT DETECTION PLUGINS ON VULNERABILITY

DETECTION.
Firmware

Stack Tracking Heap-Tracking Instruction-Tracking
Stack Out-of-Bound Heap Null-Pointer Double Use-After Divison Integer

Overflow r/w Overflow Reference Free Free Zero Overflow
Lwip Dhcp Bm 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Lwip Httpsrv Bm 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Lwip Iperf Bm 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Lwip Httpssrv Mbedtls Bm 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Lwip Httpsrv Rtos 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Lwip Ping Rtos 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Lwip Httpssrv MbedTLS Rtos 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Lwip Httpssrv Wolfssl Rtos 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Ble Wireless Power Ptu Bm 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Ble Proximity Reporter Bm 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Smac Connectivity Test Bm 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Smac Wireless Messenger Bm 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Ble Pluse Oximeter Rtos 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Ble Temperature Rtos 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Smac Low Power Rtos 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
Smac Wireless Uart Rtos 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
NFC WriteTag 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
NFC WriteToBleApp 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
WIFI Client Server 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)
WIFI Http Server 8(1) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8) 8(8)

Sum: 89.06% 12.50% 100% 100% 100% 100% 100% 100% 100%

peripheral access points helps in expanding the exploration
space.

Based on the above observations, we could positively an-
swer Q3 that multiple coverage feedback guidance is helpful
to the growth of firmware coverage.

4) Q4: Effectiveness and performance of fault detection
plugins in identifying vulnerabilities during hybrid fuzzing:
The influence of fault detection mechanism is evaluated from
two aspects: (1) the ability of different plugins to identify
typical vulnerabilities; (2) the extra time overhead of using
different plugins on firmware execution.

Ability to trigger vulnerabilities. We injected eight same
vulnerabilities into one firmware image to form a new vul-
nerable firmware, eight types of vulnerabilities are used for
injection. Thus, eight vulnerable firmware with eight different
types of vulnerabilities are formed. By infecting 20 firmware
images as shown in Table IV, 160 vulnerable firmware are
generated. We fuzzed them for 24 hours to validate the
abilities of different plugins to identify vulnerabilities. The

results illustrated show that our fault detection mechanism
can effectively identify common C/C++ vulnerabilities. More
specially, the stack tracking is able to detect stack overflow and
out-of-bound rw errors. The heap tracking can identify heap
overflow, null pointer deference, double free, and use-after-
free. The instruction tracking is able to detect division-by-
zero and integer overflow vulnerabilities. Note that the three
plugins could not be enabled at the same time for the current
implementation. Among the 160 vulnerable firmware, over
89.06% of the injected vulnerabilities were identified within
24 hours. The stack overflow will stop the firmware execution
in QEMU, leaving some vulnerabilities that may happen after
the stack overflow untriggered.

Vulnerability discovery in real firmware. We tested two
product-level firmware images (i.e., STM32-Nucleo-L152RE
[26], AWS FreeRTOS with TCP [4]). The results indi-
cate that our tool could identify the known vulnerabilities
(i.e., CVE-2018-16601, CVE-2018-16603, CVE-2018-16523,
CVE-2018-16524) in a few minutes.
Time overhead. We evaluated the extra time overhead of
different fault detection plugins by fuzzing same firmware
boundary under four settings as follows; (1) running without
plugin; (2) running with stack tracking; (3) running with heap
tracking; (4) running with instruction tracking. We collected
the total time of finishing the same iterations for each setting,
and illustrated the results in Figure V. The results indicate the
extra time overhead caused by stack tracking, heap tracking
and instruction tracking are 5.17%, 7.78% and 2.97% respec-
tively.

Based on the above observations, we could positively an-
swer Q4 that our fault detection plugins are able to identify
mainstream C/C++ vulnerabilities effectively at the expense
of acceptable overhead.
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TABLE V
THE INFLUENCE OF FAULT DETECTION PLUGINS ON FUZZING PERFORMANCE

Firmware #Iter Time Overhead(s)
No Plugin Stack Tracking Heap Tracking Instruction Tracking

lwip tcpecho bm 10 2788.311 2829.197 2926.531 2808.222
bluetooth blood pressure sensor bm 10 1380.317 1384.937 1384.561 1384.228
bluetooth wireless power ptu bm 10 901.001 903.444 900.061 904.26
smac wireless messenger bm 10 3261.476 3684.429 3837.802 3499.143
bluetooth wireless uart freertos 10 896.229 902.913 896.785 905.469

Average: 1845.466 1940.984 (+ 5.17%) 1989.148(+ 7.78%) 1900.264 (+2.97%)

TABLE VI
RESULTS OF COMPARING FIRMHYBRIDFUZZER WITH RELATED FIRMWARE FUZZING TOOLS.

Firmware Hardware Source Supported Supported Fuzzing
Fuzzing Tools Independence Independence Firmware Types Network Peripheral Method
IoTFuzzer [44] N Y Linux and MCU-based Y BlackBox Fuzzing
FirmAFL [30] Y Y Linux-based Y GreyBox Fuzzing

P2IM [66] Y Y MCU-based N GreyBox Fuzzing
HALucinator [36] Y N MCU-based Y GreyBox Fuzzing

Laelaps [34] Y Y MCU-based N Symbolic Execution
FirmHybirdFuzzer Y Y MCU-based Y Hybrid Fuzzing

TABLE VII
RESULTS OF COMPARISON BETWEEN LAELAPS AND FIRMHYBRIDFUZZER. THE #ITER IS THE NUMBER OF THE MAIN TASK’S EXECUTION, T(S) IS THE

TOTAL FUZZING TIME, #BB IS THE NUMBER OF UNIQUE BB2BB, #PP IS THE NUMBER OF UNIQUE PP2PP.

Firmware #Iter Laelaps FirmHybridFuzzer
T(s) #BB #PP T(s) #BB #PP

Lwip Httpsrv Rtos 50 2085.33 1757 16 590.87 1922 30
Lwip Ping Freertos 50 894.13 2190 3 222.61 2272 12
Lwip Httpssrv Mbedtls Rtos 50 6667.07 2162 17 1095.14 2307 38
Lwip Httpssrv Wolfssl Rtos 50 1853.08 2944 16 423.16 3134 24
Ble Pluse Oximeter Rtos 50 18635.81 4209 140 3717.89 4353 148
Ble Temperature Rtos 50 18516.39 4225 137 2950.04 4411 150
Smac Low Power Rtos 50 494.39 603 7 260.60 607 8
Smac Wireless Uart Rtos 50 869.15 996 19 349.00 1224 27
Nfc WriteToBleApp 50 1626.03 662 42 902.11 786 52
Wifi Client Server 50 2240.31 654 16 1303.94 877 35

SUM 53881.69 20402 413 11815.36 (-78.07%) 21893 (+7.31%) 524 (+26.88%)

5) Q5: Comparison between FirmHybridFuzzer with re-
lated firmware fuzzing tools.: The existing mainstream
firmware fuzzing tools includes IoTFuzzer [44], Firm-AFL
[30], P2IM [66], HALucinator [36] and Laelaps [34]. Due
to the We compared FirmHybirdFuzzerwith these tools
from five aspects: (1) Hardware-Independence, (2) Source-
Independence, (3) Supported Firmware Types, (4) Supported
Network Peripheral, and (5) Fuzzing Methods. The results
are illustrated in Table VI. IoTFuzzer is a blackbox fuzzing
tool, which relies on real devices. While the key contribution
of FirmHybirdFuzzeris achieving physical-agnostic firmware
fuzzing. FirmAFL focuses on fuzzing Linux-based firmware,
while our FirmHybirdFuzzer’s targets are MCU-based IoT
firmware. P2IM could not handle firmware with network
peripherals. HALucinator enables firmware execution without
hardware dependence by providing generic implementations
of located library functions in a full-system emulator. But,
it needs the source code of the corresponding HAL SDKs
to build the HAL function-matching database. Our approach
achieves the same goal by providing a universal symbolic
peripheral with the ability of hybrid event generation and
does not assume such knowledge. Due to lots of troubles in
deploying P2IM and HALucinator. We are not able to perform
an experimental evaluation on same benchmarks to compare
their performance with our FirmHybirdFuzzer.

We extended our previous work Laelaps [34] by: (1) for-
mulating the problem of microcontroller-based IoT firmware
fuzzing, and explaining why this problem is drastically dif-

ferent from Linux-based firmware fuzzing; (2) supporting net-
work peripherals and providing more python interfaces (e.g.,
bypassing code, fixing peripheral value, overwriting function,
etc.) to assist execution; (3) integrating mutation-based event
generation and designed a hybrid approach to fuzzing IoT
firmware. It improves performance by exploring multiple pe-
ripheral input spaces; (4) proposing a new coverage feedback
mechanism (PP2PP) specifically for fuzzing firmware; (5)
developing new heuristics as QEMU plugins for effective fault
detection. We have selected a set of representative benchmarks
to assess and compare the performance of our tool, referred
to as FirmHybirdFuzzer, with Laelaps [34]. The comparative
results are presented in Table VII, highlighting the following
observations. Our tool, FirmHybirdFuzzer, demonstrates the
ability to achieve higher code coverage, as evidenced by an
increase of 7.31% in basic block (BB) coverage and 26.88%
in peripheral access point (PP) coverage, when compared
to Laelaps. Furthermore, these superior coverage metrics are
obtained with a significantly reduced time overhead, with
FirmHybirdFuzzerrequiring only one-fifth of the time con-
sumed by Laelaps.

Based on the above observations, we could answer Q5 that
our hybrid fuzzing tool for IoT firmware (i.e., FirmHy-
birdFuzzer) has obvious differences and specific advantages
compared to the related firmware fuzzing tools.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3303780

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Penn State University. Downloaded on August 28,2023 at 14:36:24 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2023 15

VI. RELATED WORK AND DISCUSSION

This section reviews and discussed related work on IoT
firmware analysis based on symbolic execution and fuzzing
techniques, and the limitations of our approach and tool.

Symbolic execution. FIE [67] improves the symbolic exe-
cution engine KLEE to verify security properties of firmware
based on source code, but it only supports MSP430 archi-
tecture. Firmalice [68] is a symbolic execution based binary
analysis framework. It utilizes a novel model of authentication
bypass vulnerability to detect backdoor in firmware. FirmUSB
[69] uses domain knowledge of the USB protocol and sym-
bolic execution to validate firmware against expected func-
tionality, but it only supports the 8051 architecture. SymDisk
[70] used a symbolic disk to test the file systems. SymDrive
[33] is a system to test Linux and FreeBSD drivers without
devices based on symbolic execution (i.e., S2E). However,
our approach focus on the analysis of microcontroller-based
firmware by using symbolic execution and fuzzing. Inception
[71] is a KLEE based symbolic execution framework to test
embedded firmware by merging LLVM bitcode, hand-written
assembly, binary libraries and part of processor hardware
behavior together. Laelaps [34] uses symbolic execution to
model the effective behavior of unknown peripherals, and aims
to speculatively selects the most “promising” path so as to
initialize a context that is suitable for further analysis. We
extended Laelaps [34] by: (1) formulating the problem of
microcontroller-based IoT firmware fuzzing, and explaining
why this problem is drastically different from Linux-based
firmware fuzzing; (2) supporting network peripherals and
providing more python interfaces (e.g., bypassing code, fixing
peripheral value, overwriting function, etc.) to assist execu-
tion; (3) integrating mutation-based event generation (note the
Laelaps only use symbolic execution) and designed a hybrid
approach to fuzzing IoT firmware. It improves performance
by exploring multiple peripheral input spaces; (4) proposing a
new coverage feedback mechanism (PP2PP) specifically for
fuzzing firmware; (5) developing new heuristics as QEMU
plugins for effective fault detection. DICE [35] proposes a
drop-in solution for firmware analyzers to emulate DMA input
channels and generate or manipulate DMA inputs.

Fuzzing. RPFuzzer [43] is a framework designed to
discover router protocol vulnerabilities by sending packets
to devices, keeping watch on CPU utilization and checking
system logs. [26] demonstrates that memory corruption vul-
nerabilities often result in different behaviors on embedded
devices, and illustrates the influence on security analysis of
firmware. IoTFuzzer [44] is an App-based black-box fuzzer
to detect memory corruption flaws of IoT firmware without
access to the images. Avatar [31] and avatar2 [32] enable the
dynamic analysis of embedded devices by orchestrating the
execution of an emulator together with devices. They leverage
the real peripherals to handle I/O operations, but emulate
the firmware in an emulator and forwarded the I/O accesses
from the emulator to the real devices. For hardware that
is not available, they implement the corresponding software
abstraction to act as the real peripherals. FIRMADYNE [29]
utilizes a built-in modified Linux kernel to enable the QEMU’s

full system emulation of Linux-based firmware. Based on it,
FIRM-AFL [30] proposed a high-throughput greybox fuzzer
for POSIX-compatible firmware. It could only fuzz Linux-
based firmware. But a large number of microcontroller-based
firmware runs lightweight RTOS or bare-metal systems, which
can be addressed by our hybrid fuzzing system. P2IM [66]
use an abstract model for a target microcontroller architecture
class, which defines the access patterns of different peripheral
registers, to build an approximate emulator for firmware exe-
cution and testing. However, the construction of the abstract
model relies on manual work and expert knowledge. Different
from P2IM, our approach enables the automatic execution and
fuzzing of firmware by using a unified symbolic peripheral
with the ability of hybrid event generation. HALucinator
[36] provides a high-level replacement for HAL functions
to decouple the hardware from the firmware, and enables
the re-hosting and analysis of firmware by providing generic
implementations of identified library functions in a full-system
emulator. Our approach achieves the same goal by providing
a universal symbolic peripheral with the ability of hybrid
event generation. But, HALucinator needs the source code
of the corresponding HAL SDKs to build the HAL function
matching database, while our approach does not assume such
knowledge.

Limitaion. Our tool exclusively supports Cortex-M3/M4-
based MCU firmware and is not compatible with Linux-based
firmware. The inclusion of the data sheet for the MCU is
essential in order to define the configuration files, and manual
analysis is required for certain aspects. Moving forward, we
endeavor to expand our research to encompass a wider range
of MCU types and peripherals.

VII. CONCLUSION

We have devised and implemented a physical device-
agnostic hybrid fuzzing system, specifically designed to per-
form fuzzing on microcontroller-based firmware without the
need for actual devices. To achieve this, we have incorporated
a unified symbolic peripheral into the emulator, allowing
for the emulation of unknown peripherals’ behaviors. Con-
sequently, the firmware execution becomes independent of
the specific physical devices used. Our approach employs a
hybrid methodology that combines symbolic execution with
greybox fuzzing to generate values for various peripheral
accesses. To optimize the utilization of symbolic execution and
fuzzing, we propose probability-based scheduling strategies.
Additionally, we have developed multiple coverage feedback
mechanisms, including unique transitions from one basic block
to another and from one peripheral access point to another.
These coverage feedbacks are collected and utilized to guide
the fuzzing process, which is facilitated by a genetic algorithm.
Furthermore, we have introduced a fault detection mechanism
to identify common vulnerabilities in C/C++ code and suc-
cessfully implemented it. To demonstrate the effectiveness and
efficiency of our hybrid fuzzing system, we have conducted
a comprehensive set of experimental evaluations using a
benchmark.
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