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Abstract—As cold boot attacks become a realistic threat to
cryptographic systems, several defense solutions have been pro-
posed in the past decade to protect cryptographic systems against
such attacks. Interestingly, most of these defense solutions are
implemented at the kernel level. Yet running them at the kernel
level is risky. Given the complexity of these defense solutions,
they inevitably introduce vulnerabilities that could be exploited
by attackers and then lead to the compromise of the entire
operating system. In this paper, we present CAUSEC which
avoids storing crypto keys and other sensitive information in the
memory and performs key computation in the cache. CAUSEC
protects cryptographic systems against cold boot attacks, but
is mostly deprivileged to the user mode. Our experimental
results demonstrate that CAUSEC secures key computation and
incurs reasonable performance overhead: 11.99% in decryption
rate and 7.1% in decryption/signing requests processing when
incorporated with the Apache web server.

Index Terms—cold boot attack, cache-based computation

I. INTRODUCTION

Cryptographic systems are critical to the security of today’s
computer systems and communications. Typically, during run-
time, cryptographic systems store their encryption keys in the
memory, and rely on the operating systems to protect the keys.
Unfortunately, such key computation systems are vulnerable
to cold boot attacks [14]. In cold boot attacks, attackers exploit
memory remanence effects exhibited by RAM devices to
recover encryption keys from memory even after the machine
is powered down. Over the past decade, cold boot attacks
have been widely studied [11], [24], [27], [30], [32], [34] and
proved to be a realistic threat to memory-based key storage.
Not surprisingly, on the defense side, different approaches
have been proposed to protect cryptographic systems against
cold boot attacks as well as more general memory disclosure
attacks. Among these defense solutions, Loop-Amnesia [26]
and Tresor [22] propose to store encryption keys in privileged
CPU registers, whereas Copker [12] and Mimosa [13] propose
to store encryption keys in CPU caches. Interestingly, all these
four projects have been implemented in the Linux kernel,
either as a kernel patch or as a separate kernel module.

However, the implementation and deployment of defense
mechanisms as a kernel patch is intrusive to the existing
kernel; running the defense as kernel modules is less intrusive,
but it still increases the size of the trusted code base (TCB).

Copker introduces nearly 8K lines of C code at the kernel
level, and Mimosa introduces nearly 10K lines of C code at the
kernel level. Such an increase in the code size, inevitably intro-
duces software bugs and exploitable vulnerabilities. Moreover,
because these modules run at the kernel level, the compromise
of such modules could lead to the compromise of the entire
operating system.

In this paper, we present CAUSEC1, a system which aims
to protect encryption keys against cold boot attacks. Unlike
the existing solutions, we further aim to dramatically reduce
the trusted code base at the kernel level. More specifically,
we deprivilege the key computation program to the user mode
when possible, and then trap into the kernel mode only when
accessing privileged resources is necessary. When the program
runs in the user mode, it relies on some privileged instructions
to make sure the cryptographic keys in cache are not leaked
to RAM. We leverage and modify an existing work namely
Dune [5] to expose the needed privileged instructions to
the user-mode program without compromising security. We
implement CAUSEC on a Linux system. Our experimental
results show that CAUSEC can protect the private keys from
cold boot attacks while running from user space. CAUSEC
incurs reasonable performance overhead: CAUSEC performs
11.99% fewer RSA decryption operations per second compar-
ing with the original MbedTLS library, and when comparing
with Apache server utilizing Openssl engine with the original
MbedTLS library, CAUSEC can handle 7.1% fewer requests
per second.

Overall, this paper makes the following contributions:
• We present CAUSEC, a cache-based defense mechanism

to secure key computation in cryptographic systems.
Unlike existing work, CAUSEC is a pure user-space
application. We implemented a prototype of CAUSEC
and validated its efficacy.

• Our evaluation results show that CAUSEC can effec-
tively prevent key information from being leaked to
RAM, defeating potential physical attacks to RAM.
CAUSEC is efficient enough for production usages. We
also report several lessons we learned throughout our
implementation and evaluation.

1CAUSEC stands for CAche-based User-level SEcure Computation.



The remainder of this paper is structured as follows. We
describe the necessary background information and our threat
model in Section II. We detail our design and implementation
in Sections III and IV, respectively. We present our evaluation
results in Section V. We discuss security analysis of our
implementation in Section VI. We survey related work in
Section VII, and finally we conclude the work in Section VIII.

II. BACKGROUND

A. Threat Model

In this paper, we operate under the presumption that the
adversary can acquire physical access to the computing de-
vice. With such a privilege, they may be able to shutdown
the machine, take the RAM out of the machine and dump
the memory out to other storage devices controlled by the
adversary. After the above steps, the adversary would be able
to recovery information from the memory, and this is the so
called “cold boot attack”, as presented in [14].

We assume that the operating system is secure and isn’t
under adversary’s control. Adversary does not possess an
account on the computing device. Furthermore, the computing
device is devoid of any malware or malicious software.

B. Cache Operating Mode

x86 provides different mechanisms for controlling the
caching of the data between processor, cache, and memory.

1) Write Back Memory Type: On x86 systems, a CPU
cache is in write-back mode if both bit 29 and 30 of the
control register CR0 are cleared [17]. When the write-back
cache is enabled on a CPU, any changes in the CPU cache
line do not instantly forward to the system memory. Instead,
it waits until an explicit or implicit operation is performed.
For example, a write-back cache will be synchronized with
the system memory if (1) the CPU cache is full; therefore,
some cache lines must be evicted; or, (2) cache consistency
mechanisms explicitly trigger the synchronization to maintain
cache coherency.

While in write-back mode, a read hit accesses the cache and
a write hit updates the cache. On the other hand, a read miss
replaces the cache and a write miss fills up the cache lines.

C. Cache Management Instructions

On x86, INVD and WBINVD instructions are used to inval-
idate the cache lines from all cache levels [17].

• INVD is a privileged x86 instruction that operates on all
cache levels to invalidate the cache contents. Executing
this instruction will invalidate any modified internal cache
lines without writing them back to the system memory.
In brief, executing INVD instruction will result in erasing
the local cache contents without any trace.

• WBINVD is also a privilege x86 instruction and achieves
the same goal as INVD by invalidating the internal modi-
fied cache lines from all cache levels with one distinction.
WBINVD instruction writes back the modified cache lines
to the system memory before invalidating them.

D. Intel Virtual Machine Extension (VMX) and Dune

Intel VMX introduces two modes of CPU operations: root
mode versus non-root mode. In each mode, there are four
privilege levels: from ring 0 to ring 3. The intention is to run
the hypervisor in the root mode while running the guest virtual
machine (VM) in the non-root mode. The VM itself may have
an operating system as well as applications. Therefore, the
applications in the VM will be running at ring 3 of the non-
root mode, whereas the operating system in the VM, which
is also known as the guest OS, runs at ring 0 of the non-root
mode. The VM runs natively on the CPU, but will cause a
VM exit when some privileged resources are accessed. A VM
exit is defined as an event of transitioning from the guest OS
to the hypervisor. Inside the hypervisor, a function which is
defined to handle each VM exit is called a VM-exit handler.

Dune [5] leverages the Intel VMX extension to expose oth-
erwise privileged instructions (i.e., those can only be accessed
in ring 0) to user-space applications. It comprises a small
kernel module and a user-level library. The kernel module bor-
rows code from Linux KVM and acts like a mini-KVM, which
provides a process-level virtualization. The user-level library
enables user-level processes to enter into the non-root mode
ring 0 (named Dune mode in the original Dune paper), which
is achieved by invoking a function named dune_enter().
The user-level library communicates with the kernel module
via ioctl system calls which are sent to a virtual device
file under the /dev directory (i.e., /dev/dune). Processes
not in the Dune mode cannot access privileged resources. We
leverage and modify Dune to grant user-space applications
with access to cache related instructions to confine private
data within L1D.

III. DESIGN

A. Design Goals

The major design goal of CAUSEC is to not store the
private key in the memory. Instead, we attempt to store the
private key in the cache. In other words, while performing
the private key computation, we want to ensure that none
of the intermediate states or data end up in RAM. Rather,
they should be enclosed safely inside a protected environment.
Our implementation is based on a key-encryption-key structure
where we use one key to securely encrypt another. After
successful initialization, the AES master key is derived from
a user password. We use this AES master key to encrypt the
plaintext RSA private key and keep that encrypted key in the
memory.

Our ultimate goal is to provide decryption and signing
services using the private key and preserve the information
regarding the private key while performing the requested
service. Therefore, the following requirements need to be met.

• To ensure the safety of private key computation infor-
mation in memory, it is necessary to track it. Techniques
such as page coloring or page tagging can be employed to
monitor memory pages containing sensitive information
by assigning them to specific memory locations. This
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allows for identifying memory pages holding sensitive
data and removing them from the memory address after
computation is completed.

• All the necessary variables, including the plaintext private
key, should reside inside that aligned memory address
space.

• Context switches suspend the execution of the current
process, store the corresponding data into the RAM and
start executing another process. Therefore, if a context
switch happens during the private key computation, all
the sensitive information regarding the key will end up
in the RAM. Therefore, once the private key computation
starts it cannot be interrupted.

• After the computation, the secure environment should be
cleaned up thoroughly.

Like Copker [12], we too leverage the L1d cache to create a
secure environment. A chunk of bytes are declared as a static
variable and then allot memory for it. The size of this static
variable should be chosen carefully so that, (1) it can fit inside
the L1d cache, (2) large enough to hold all the intermediate
states of the private key computing process.

To meet the third requirement, the decryption or signing
service needs to run in atomic mode. Hence, before the de-
cryption/signing service starts, interrupts need to be disabled.
Without interrupts, the kernel will not be able to schedule any
new tasks to the CPU. In a nutshell, disabling interrupts will
disable the context switch. Therefore, the decryption service
can run interrupt-free.

B. CAUSEC Architecture

CAUSEC utilizes a key-encryption-key strategy where a
small key, also known as the master key, is used to encrypt
larger keys. Using a smaller key gives CAUSEC the ability to
store this master key securely into a privileged register, which
an adversary can not access from user space. Therefore, the
data encrypted with this master key will remain secure.

1) Master Key Generation: CAUSEC employs TRESOR
[22] to derive the master key from the user’s password and
stores it into debug registers. Thus, our master key is also
protected by TRESOR. It is worth mentioning that the user’s
password must be strong enough to withstand brute force
attacks.

During OS booting, the AES master key is derived from the
user password and put into the debug registers. The key deriva-
tion process happens once during early OS initialization and
inside the kernel space. After the key is placed into the debug
registers, all memory lines that contain sensitive information,
such as fragments of the password or key, undergo a thorough
erasure process. This involves overwriting all memory traces
of the sensitive information.

On a separate offline isolated machine, we use the previ-
ously generated AES master key to perform an AES encryp-
tion of all plaintext private keys and copy those encrypted keys
to the target machine where we intend to deploy CAUSEC.
Thus, this target machine does not contain any plaintext private
keys but only the AES encrypted private keys.

Fig. 1: CAUSEC Key Loading Mechanism

2) Loading Private Key: After the system boots success-
fully, all encrypted private keys are loaded from the hard
drive into RAM. To protect these private keys, they are only
decrypted inside the secure environment of the CPU’s L1D
cache when a request for decryption or signing service is
received. At all other times, the private keys remain encrypted
in RAM. This ensures that the private keys are only decrypted
when necessary, reducing the risk of unauthorized access to
the keys. Figure 1 shows a step by step private key loading
process.

CAUSEC’s private key loading mechanism is similar to
Copker [12], (1) During OS boot, TRESOR collects user’s
password from the command line prompt, generates the master
key from this password and copies the master key into the
debug registers of all the available CPUs; (2) All the encrypted
private keys are loaded from the hard disk drive into RAM;
(3) Upon receiving a decryption/signing service request, the
master key is loaded from CPU’s debug registers into CPU’s
L1D cache; (4) Corresponding encrypted private key is loaded
from the hard disk drive to L1D cache; (5) The AES master
key is used to decrypt the encrypted private key, produces a
plaintext private key which is then used to perform requested
decryption/signing operation.

To adhere to the design goals mentioned in III-A, all
these steps, as mentioned earlier, are atomic and can not be
interrupted; otherwise, sensitive private key data may end up in
the RAM. In addition, these private key-related operations will
occur inside the secure environment inside CPU’s L1D cache.
Output will be written into the RAM only after the private key
operations are successfully completed. Prior to releasing the
cache, all other variables within the secure environment will
be zeroed out. Refer to section III-C for details.

C. Computing within a Secure Environment

In order to ensure that no part of the private key operation
will appear in RAM, we leverage the CPU’s L1d cache to
create a protected environment and perform private key oper-
ations in atomic mode inside that enclosed environment. This
environment should contain all the variables that the private
key operation will use. The minimum essential components
that should be in the protected environment are as follows,
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• Master key: During the decryption/signing operation, the
AES master key will be copied into this master key
variable from the debug registers.

• AES context: This AES context variable will contain AES
key scheduling information derived from the master key.
This information will be used to decrypt the encrypted
RSA private key and produce a plaintext RSA private
key.

• RSA context: This variable will hold the actual RSA
private key. RSA private key is encrypted, and the AES
context produces the plaintext RSA private key. RSA
context will hold this key.

• Cache stack frame: A stack frame function that operates
only within the protected environment will be used by
the series functions that perform the RSA private key
operation.

• Input/Output: These variables will hold the input and
output of the RSA private key operation.

We can not use heap memory inside the protected envi-
ronment, because heap memory is dynamically allocated, and
typically the memory management subsystem in operating
systems determines the location of such memory. Therefore
it is very difficult to restrict heap memory allocation to a
predefined address space. Currently, all standard cryptographic
libraries implement RSA using heap memory to handle long
integers. This violates our design goal to restrict the RSA
private key operation into a secure address space since we can
not control the location of the dynamically allocated memory
block. We circumvent these hurdles by replacing the heap
memory pointer with a static array in the long integer handling
function of the cryptographic library. Therefore CAUSEC
only uses stack variables during the private key operation.

The operating system controls the stack memory location
for each thread. Like heap memory, we can not replace
stack memory since all the procedural function call uses the
stack. We circumvent this challenge using the same techniques
introduced in Copker [12]. During private key operations,
CAUSEC takes control of the current stack and creates a
new stack inside the CPU’s L1d cache, temporarily switches to
this newly created stack, and performs the operation. Figure 2
shows the detailed implementation of this customized stack.
Copker was built on 32-bit systems, and CAUSEC is built on
64-bit systems, thus our implementation of the stack switch
differs slightly from Copker. We will discuss more on this in
section IV-B2.

Inside the protected environment, CAUSEC works as fol-
lows:

• Read two debug registers and restore the 128-bit AES
master key. This key will be used to decrypt the encrypted
RSA private key.

• Initialize AES context using the reconstructed AES mas-
ter key. This context now contains all the AES round keys
information. This information will be used to perform an
AES decryption.

• Using the AES context, perform an AES decryption on

Fig. 2: Customized Stack

the encrypted RSA private key and produce a plaintext
RSA private key.

• The plaintext RSA private key is then loaded into the
RSA context to perform the private key operation.

• Perform private key operation on the message using the
RSA context and flush the output to the output variable
of the secure environment.

• After the private key operation, erase the protected envi-
ronment before releasing the cache.

1) Atomicity: One of CAUSEC’s design goals is, it can not
be stopped in the middle of execution. Otherwise, data will end
up in RAM which breaks our design goal. In modern operating
systems, multi-tasking is common and achieved via context
switching. CPU’s current state and all its registers contents
are stored in RAM during a context switch. Context switches
between processes typically happen due to interrupts. There-
fore, disabling interrupts will prevent OS from scheduling new
tasks to the current CPU.

2) Erase Secure Environment: After responding to a de-
cryption/signing request, it is crucial to clean up secure
environment carefully to prevent any sensitive values from
ending up in RAM. CAUSEC uses stack memory to create
this secure environment, making it easy to erase as the memory
is sequential. A loop is run through the predefined stack
memory addresses and put zero in each address to overwrite
any sensitive data before leaving the atomic section.

IV. IMPLEMENTATION

We developed a CAUSEC prototype in a Linux environ-
ment. Our machine runs with Linux kernel 4.4.0 for the x86-
64 bit platform. Our OpenSSL [3] version is 1.1.1c. We used
Intel Core i7-6700 Quad core CPU with 16GB of RAM for the
implementation and validation. CAUSEC utilizes the CPU’s
L1d (data cache) to create a secure environment. The size of
the L1d cache is 32KB.

We implemented CAUSEC as an OpenSSL RSA engine
component, and our current implementation contains a total
of 8,656 lines of C code. Among these, our RSA engine code
contains 1,287 lines of C code, and the rest of the code comes
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from the cryptography implementation and the Dune user-
space library. For the cryptography implementation, we use
MbedTLS [2] version 1.2.5. This library was previously known
as PolarSSL, and later gets acquired by ARM and renamed
MbedTLS.

All the code runs in user space. On the other hand, Copker
contains roughly 8k lines of C code that includes the kernel
module itself and the MbedTLS library code. Its worth men-
tioning that, Copker runs entirely inside the kernel except an
OpenSSL wrapper.

Currently, we support up to 2048-bit RSA key pairs. The
AES master key is generated from the user password during
machine booting and stored into the debug registers via
TRESOR [22]. We use a 128-bit AES master key to support
key encryption key structure. Theoretically, CAUSEC can
support up to 256-bit AES master key since each of the
four(db0-db3) debug register is 64-bit long on an x86-64
bit system. CAUSEC only reads the first two debug registers
to reconstruct the 128-bit AES master key. It is important to
note that we strictly follow the design goals mentioned in
section III-A when implementing CAUSEC.

A. Exposing Privileged Instructions into User Space

To better control the cache, CAUSEC needs to access
privileged instructions in user space. We adopt Dune [5] and
modify it to achieve this goal without compromising security.
More specifically, we run user applications in the non-root
mode (thanks to the VMX extension) ring 0. Although the
user process can now access privileged instructions, a kernel
module in the root mode is in place to mediate the access.
Concretely, the kernel module configures the virtual machine
control structure (VMCS) to enforce which resources are
exposed to the user process (in the non-root mode). In our
implementation, we allow user processes to access debug
registers to retrieve the master key information.

We also added two VM-exit handlers to handle INVD and
WBINVD instructions, which allow user-level processes to
invalidate caches. Finally, the default Dune module already
allows user-level processes to run cli/sti instructions to
enable/disable interrupts.

Lessons Learned: We implemented two VM-exit handlers,
one to handle INVD and the other to handle WBINVD,
but we later found that the latter is not necessary. This is
because the Intel software developer manual [17] classifies
these two instructions into two different categories. INVD
falls into the category of “Instructions That Cause VM Exits
Unconditionally”, whereas WBINVD falls into the category
of “Instructions That Cause VM Exits Conditionally”. For
WBINVD, Intel VMX actually allows us to control whether or
not running WBINVD from the guest OS would trigger a VM
exit: the VMCS data structure contains a 32-bit vector called
the “secondary processor-based VM-execution controls”, and
bit 6 of this vector decides whether or not executions of
WBINVD cause VM exits. In our code, we set this bit to 0,

which gives guest OS2 the control of this instruction, and thus,
running this instruction from the guest OS will not trigger
a VM exit. For INVD, its execution will trigger a VM exit
regardless of how the VMCS data structure is configured.
Therefore, adding a VM-exit handler into the Dune module
is necessary. When handling an exit caused by INVD, we first
move the guest RIP pointer one instruction forward, and then
run INVD on behalf of the guest OS.

Dune currently includes 3,973 lines of C code in kernel.
To be aligned with our goal of reducing kernel TCB, we
manually debloated it by roughly 25%. The removed code
mostly includes code that exposes resources CAUSEC does
not need, as well as code that is for compatibility purposes.
Eventually we introduced approximately 3,000 lines of code
into the kernel, which is much less than Copker (8k lines) and
Mimosa (10k lines).

1) Security Consideration of Exposing Privileged Instruc-
tions to User Space: Exposing privileged instructions into user
space does pose some security risks. For example, allowing
a user level program to enabling/disabling interrupts gives
this program the power to monopolize the CPU which could
potentially lead to a denial-of-service (DoS) attack. Such
risks can be mitigated with a little effort from the system
administrator: All Dune communications are conducted via
the device file /dev/dune, and therefore the system ad-
ministrator can set up the permission of this file and only
allow either specific users or just the system administrator
himself/herself to launch applications which intend to run in
the Dune mode. Furthermore, the aforementioned hardware-
defined data structure VMCS offers fine-grained control over
what a process running in the non-root mode can do. By
configuring this data structure, we define what instructions
are exposed and what instructions are not exposed. As of
now, we only expose the instructions we described above
to user space. The original Dune module exposes more,
including instructions which load the global descriptor table
(LGDT), load the local descriptor table (LLDT), invalidate the
process-context identifier (INVPCID), invalidate TLB entries
(INVLPG), and more. Many of these privileged instructions
are not necessary to our key computation system, and thus we
do not expose them to user space.

2) Modification to the User Space Dune Library: In Dune,
the user space library consists of both C code (6.5k lines)
and assembly code (500 lines). We build it as a static library.
However, linking it with our OpenSSL engine incurs some
unexpected errors in relocation. We later found that this was
due to referencing a function with a 32-bit signed number
which was not enough in position independent code. We
solved this problem by using the movabsq instruction to load
the 64-bit target address into a temporary register and then
indirectly access the target. The modifications we have made
are summarized in Table I.

2In this paper, we are in the context of process-level virtualization, thus the
concept of guest OS is actually CAUSEC, which is just an application.
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TABLE I: Modified User Space Dune Library

Original Code Replacement Code
call on_dune_exit movabsq $on_dune_exit, %rax

call *%rax
lea dune_syscall_handler, %rax movabsq $dune_syscall_handler, %rax

lea dune_ret_from_user_finish, %rax movabsq $dune_ret_from_user_finish, %rax
call dune_trap_handler movabsq $dune_trap_handler, %rax

call *%rax

Fig. 3: CAUSEC API Structure

B. OpenSSL RSA Engine

We implemented CAUSEC as an OpenSSL RSA engine
component. We show how a CAUSEC-enabled application
requests secure cryptographic services and how the requests
are routed to the core CAUSEC engine in Figure 3.

Besides, we developed an companion program for
CAUSEC to generate and encrypt the private key. It should
run offline on a different machine. The encrypted keys should
be copied to the target machine (which needs to use the
private keys) via out-of-band mechanisms (e.g., USB disk) for
security. In the following, we show the process that we use to
generate the encrypted private key in the offline machine step
by step.

• In the secure offline machine, we use the OpenSSL tool
to generate a 2048-bit RSA private key pair.

• We then extract the raw RSA private key component from
the RSA private key and store it into a file.

• Our program takes the user’s password and uses the same
algorithm as TRESOR to generate the AES master key.
Then it reads the raw RSA private key components from
the file and uses newly generated AES master key to
perform an AES encryption and store the encrypted RSA
private key into a file.

1) Execution Environment: We define the secure environ-
ment in a static data structure which occupies a contiguous
memory region. It contains all the variables that CAUSEC
needs for private key operations. The data structure is defined
as follows.
struct SECURE_ENV {
unsigned char masterKey[128/8];
aes_context aes;
rsa_context rsa;
unsigned char encryptedPrivateKey[KEY_BUFFER_SIZE];
unsigned char cachestack[CACHE_STACK_SIZE];

unsigned char in [KEY_LEN];
unsigned char out[KEY_LEN];
}secure_env;

encryptedPrivateKey holds the encrypted RSA pri-
vate key. The memory of the variable cachestack is where
CAUSEC creates its custom stack and performs the private
key operation. The size of this static variable is defined by
CACHE_STACK_SIZE which is 19.50 KB in our prototype.
It is large enough to hold all the intermediate variables during
the private key operation. Variables in/out hold the input
buffer and output buffer of the RSA operation respectively.
The size of this data structure is 22.58KB, which easily fits
in the L1d cache of our target CPU, which is 32KB in size.

2) Custom Stack: To ensure all sensitive data is protected
from cold boot attacks, before CAUSEC responds to a decryp-
tion/signing request, we create a custom stack frame inside
the aforementioned secure environment. More specifically, we
write assembly code to manually manipulate both rsp and
rbp to switch the stack to secure_env.cachestack
defined before. To avoid breaking the code, after each private
key operation, we restore both registers to the system allocated
ones. This is implemented in the function stackswitch()
as shown Listing 1.

1 pushq %%rbp
2 movq %%rsp, %%rbp
3

4 //Point to stack bottom.
5 movq 16(%%rbp), %%rax
6

7 // Creating new stack.
8 movq %%rbp, (%%rax)
9

10 // Setting rsp to the new stack
11 movq %%rbp, -8(%%rax)
12

13 // rbx now point to the old rbp
14 movq %%rbp, %%rbx
15

16 // Create new stack frame
17 movq %%rax, %%rbp
18 movq %%rax, %%rsp
19 subq $40, %%rsp
20

21 // Parameter for function
22 movq 32(%%rbx), %%rdx
23 movq %%rdx, %%rdi
24

25 // Call function
26 call 24(%%rbx)
27

28 // Returning to system stack
29 movq %%rbp, %%rbx
30 movq (%%rbx), %%rbp
31 mov -8(%%rbx), %%rsp
32

33 leave
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34 :::rax,rbx

Listing 1: stackswitch() function in assembly code

3) RSA Implementation: CAUSEC employs MbedTLS to
implement RSA operations. MbedTLS is a portable, modular,
lightweight cryptographic library. It implements CRT, sliding
window, and Montgomery multiplication to speed up RSA
decryption/signing operations. MbedTLS uses heap memory
in its long integer module. Since we cannot use heap memory
whose location is uncontrollable, we replace the heap memory
allocation of a long integer module with a static array. To
perform a 2048 bit RSA private key operation, for each
long integer, we allocate 268 bytes. To limit the memory
consumption, we use a sliding window of size 1.

A cache-line conflict during cryptographic operations could
lead to a write-back to memory. To prevent this, the approach
strictly limits data usage to the secure_env. MbedTLS
library ensures thread safety in its cryptographic operations.
During RSA operations, all necessary variables, buffers, and
states are encapsulated within the rsa_context structure.
These variables are not shared globally across different RSA
operations or instances. In our particular case, we initialize
the rsa_context within the secure_env, effectively
isolating and encapsulating all the required variables for
cryptographic operations within this secure environment. Thus,
cache line conflict will not happen.

4) Loading into L1D cache: To create the secure environ-
ment inside the L1d cache, we first need to load the static
secure environment mentioned earlier into the L1d cache. We
did this by leveraging the write-back memory type.

If an x86 CPU instruction tries to write data into a memory
location that has the write-back memory type, the CPU first
checks its L1d cache for a cache line containing the memory
location of that data. If no such cache line is present in the
L1d cache, data is then fetched from the upper-level cache or
RAM.

Leveraging this mechanism, we load our secure structure
into the L1d cache by reading and writing back one byte at a
time from the secure_env. The CPU’s cache line is filled
up with 64 bytes at a time. So, when we read or write one-
byte data from an address, the entire 64-byte data is loaded
into the cache.

5) Atomicity: To prevent the operating system from relocat-
ing the process to another CPU before disabling the interrupt,
we set the current process priority to the highest. We did
this by using setpriority(). Then, we disable hardware
interrupts by calling the cli instruction which is exposed to
the user space with the help of Dune. Therefore, the operating
system will not try to schedule any new task to the current
CPU. As a result, CAUSEC’s execution will run interrupt-
free. Upon finishing the assigned task, we call x86’s sti
instruction to re-enable hardware interrupts.

6) CAUSEC algorithm: Algorithm 1 shows the primary
working mechanism of CAUSEC. Upon receiving a request,
CAUSEC uses sched_getcpu() to get the core id where
the current task is initialized. Then using the processor’s

Algorithm 1: CAUSEC algorithm
Global Var: struct SECURE ENV secure env, sem t

SEM GLOBAL
Input : message, encryptedPrivateKey
Output : to

1 Procedure decrypt() or sign()
2 sem_open (SEM GLOBAL);
3 cpuID ← sched_getcpu();
4 Set processor affinity to cpuID;
5 setpriority (PRIOPROCESS, 0, -20);

// enter dune mode
6 dune_enter ();
7 sem_wait (SEM GLOBAL);

// disable interrupts
8 asm (“cli” ::: “memory”);
9 fillL1 (secure env, sizeof(SECURE ENV));

10 (secure env →in) ← message;
11 (secure env →encryptedKey)

← encryptedPrivateKey;
12 stackSwitch

(secure env,secure operation,secure env
→cacheStack+Cache Stack Size−8);

13 clearenv (secure env);
// enable interrupts

14 asm (“sti” ::: “memory”);
15 to← (secure env→ out) ;
16 sem_post (SEM GLOBAL);
17 sem_close (SEM GLOBAL);

affinity, the task is bind to the current core to avoid incon-
sistency if the task is later scheduled into another core. By
calling dune_enter(), CAUSEC enters in Dune mode
to execute exposed privilege x86-64 instructions. Executing
cli instruction with inline assembly will disable the interrupt
mechanism of the current core. Therefore, OS will not be able
to schedule any new task to the current core. Hence, CAUSEC
will run interrupt free. Execution of the sti instruction will
restore the interrupt mechanism.
secure_operation() performs the secure private key

operation upon request using stackSwitch(). As men-
tioned earlier, stackSwitch() creates a new stack in-
side the L1d cache of the current core and the bottom of
that stack is pointed by SECURE_ENV → cacheStack +
CACHE_STACK_SIZE - 8.

V. EVALUATION

This section presents the validation mechanism and perfor-
mance evaluation results of CAUSEC. Validation provides an
experiment-based investigation that confirms that CAUSEC
can confine sensitive data in the L1d cache. Performance eval-
uation provides the experimental results to show the efficiency
of CAUSEC when integrated with a real-world application.

A. Security Validation

Proving CAUSEC can hold the data into the L1d cache
without flushing it into the RAM is a daunting task due to
the lack of instructions to query the cache line along with the
absence of cache control utility on x86 platforms [22], [23].
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Therefore, to validate CAUSEC, we rely on an experiment-
based proof. We adopt a similar validation mechanism that
Copker presents. The basic validation idea remains the same
except, we did the validation from user space. Unlike Copker
[12], CAUSEC executes required privileged x86 instructions
for validation purposes from user space by leveraging the small
kernel module that we introduce in Section IV.

The validation in its simplest form is described as follows.
(1) Take a copy of the current state of the main memory before
running any private key operations that use CAUSEC; (2)
After the private key operation, invalidate all the modified
cache lines before releasing the cache; (3) Finally, compare
the current state of the main memory with the previous copy.
Any changes in the main memory would indicate a cache leak
during the private key operation. Therefore sensitive data has
been written into the main memory before invalidating the
cache line, thus changing the main memory. On the other
hand, an unchanged main memory will verify the validity of
CAUSEC.

In our experiment, instead of capturing a copy of the main
memory, we inserted specific, fixed-length words into a secure
structure. After completing the private key operation, we used
the x86 INVD privilege instruction to clear any modified cache
lines. We then checked the secure structure for the presence
of those fixed-length words. If they remained unchanged, it
would serve as evidence of the validity of the project.

CAUSEC’s validation algorithm is almost the same as the
actual working algorithm with a few extra steps. Since the
primary goal is to ensure that data inside the L1d cache
is never flushed into the RAM while doing the private key
operation, we used the INVD instruction to invalidate all the
modified cache lines before releasing the cache.

However, running the INVD instruction calls for a metic-
ulously planned sequence due to its potential to cause data
loss by discarding uncommitted data in the cache. Such a
situation could create inconsistencies between the cache and
RAM, which could, in turn, potentially result in an operating
system crash. To avoid such issues, it is imperative to carefully
design a sequence that guarantees the successful transfer of all
essential modified data back to memory before executing the
INVD instruction.

We detail the steps of the validation mechanism as follows.
• During the initialization of CAUSEC, we assign a fixed-

length word to all the members of the secure_env
except in, out, and encryptedPrivateKey

• We then execute WBINVD instruction to flush all the
existing modified cache lines into the memory.

• In order to prevent the memory inconsistency in the
current core after executing INVD instruction, CAUSEC
executes WBINVD instruction one more time before call-
ing the secure_operation().

• After the private key operation is completed, we clear
the output and use the INVD instruction to invalidate any
cache lines that were modified during the operation. This
ensures that any sensitive information from the private
key operation is not stored in cache memory.

• We then check the copy of the secure_env in the
main memory to see if any of those previously assigned
words are modified or not. If those fixed words appear
unchanged, we can say that no data has been leaked into
the main memory during the private key operation.

In the secure_env, the size of the variable out is aligned
with CACHE_LINE_SIZE to prevent flushing data more
than the size of the output. We ran the validation algorithm
multiple times, and each time we noticed that these fixed
words remained unchanged. Thus we are assured that the data
will remain locked inside the L1d cache while CAUSEC is
running.

The steps outlined earlier serve to demonstrate the validation
mechanism. It’s important to note that executing both INVD
and WBINVD instructions is a resource-intensive process. We
employ these instructions solely to substantiate the authenticity
of the experiment. However, in the original algorithm, these
instructions are not utilized by CAUSEC.

Lessons Learned: While doing the validation, the execution
of the INVD instruction was causing the system to stall. Later
we found out that hyper-threading was causing this issue.
Hyper-threading gives the operating system the illusion that
it has more CPUs than its actual number of physical CPUs.
Therefore, our system stalls when running the INVD instruc-
tion on these logical CPUs. We turned off hyper-threading by
executing echo off >/sys/devices/system/cpu/smt/control.

B. Performance Evaluation

This section reports the performance comparison by exam-
ining CAUSEC using the revised MbedTLS library with a
plain implementation of OpenSSL engine utilizing the original
MbedTLS library running in the same environment for a lateral
comparison. The revised MbedTLS library uses a static long
integer and a smaller size sliding window (size of 1). On
the other hand, everything remains unchanged in the original
MbedTLS library implementation. It is worth mentioning that
the revised MbedTLS library itself does not promise that
sensitive data will prevail in the cache. However, it is one of
many pieces that CAUSEC requires to ensure that sensitive
data stays in the cache. The Original MbedTLS engine is not
exercising any of the steps that CAUSEC is using to enforce
security.

As previously stated, CAUSEC is developed as a compo-
nent of the OpenSSL RSA engine and can be invoked through
API calls with OpenSSL. In this experiment, we use a 2048-bit
key to evaluate the performance of CAUSEC.

1) Decryption Rate: This study compares the RSA decryp-
tion rate of CAUSEC and the original MbedTLS engine.
We developed a test program that utilizes OpenSSL’s API to
invoke both engine implementations, perform 1k decryption,
and measure the time required to complete the task. The results
of this comparison are presented in

Figure 4, shows the decryption rate comparison of
CAUSEC with the Original MbedTLS.

CAUSEC has a lower decryption rate compared to the
original MbedTLS. Specifically, CAUSEC can achieve a
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Fig. 4: RSA Decryption Rate

maximum of 320 RSA decryption operations per second, while
the original MbedTLS can achieve 363.63 RSA decryption
operations per second. This difference is due to the additional
security measures implemented in CAUSEC to protect against
cold boot attacks, which result in a reduction of 11.99% (when
the concurrency level is 8) in decryption rate as compared to
the original MbedTLS.

Lessons Learned: We wrote a test program to test the
decryption rate of CAUSEC. This test program is also an
OpenSSL engine and only provides decryption. In our original
implementation, we were mistakenly using a 32-bit integer in
the MbedTLS’s bignum.c library and using that library in our
64-bit system. It resulted in a poor decryption rate. We later
found the cause and fixed it. We also wrote a shell script
that runs the OpenSSL command to invoke our engine via
OpenSSL and perform decryption. Inside our engine we were
initializing Dune and, after the decryption, forcefully exiting
the Dune mode by calling exit(0). Each decryption was taking
too much time, since initializing Dune is costly and we were
initializing Dune for each decryption.

In our current implementation, after initializing Dune, we
start a timer. Then we call a function that implements the
Algorithm 1. In this function, we put stackSwitch() inside
a loop. This loop determines how many decryption operations
we want to perform. In our test case, we run this loop 1k
times. After all these decryption operations finish, we stop the
timer and measure how much time elapsed to determine the
decryption rate.

2) Application Level Performance: When combined with
a real-life application, we also measure the performance of
CAUSEC. We integrate CAUSEC with an Apache Web
Server to provide HTTPS services to clients and then measure
the throughput of the HTTPS server. We configure our server
to serve 1KB of HTML web page via the HTTPS protocol
with TLSv1.3 using the TLS_AES_256_GCM_SHA384 ci-
pher suites. We use ApacheBench [1] to issue 1K requests
from a client machine. From the client machine, we generate
1k requests 10 times to the server running both CAUSEC
and the original MbedTLS engine. Then we took the average
of requests per second for each attempt. Figure 5 shows a
comparison of average HTTPS throughput between CAUSEC
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Fig. 5: Apache Benchmark

and an original MbedTLS engine.
CAUSEC has a maximum capability of handling an average

of 3695.08 requests per second, while the original MbedTLS
can handle 3910.91 requests per second. The gap in perfor-
mance can be attributed to the implementation of additional
security measures, such as the use of the revised MbedTLS
library and additional steps to protect against cold boot attacks.
These measures lead to an increase in computation time,
resulting in a 7.1% decrease in the number of requests handled
per second (maximum capability), when compared to the
original MbedTLS engine.

Lessons Learned: The Apache server calls CAUSEC to
handle decryption/signing requests. In our original implemen-
tation, we called dune_init_and_enter() to initialize
Dune in CAUSEC, but it turns out that a process can
not enter into Dune mode multiple times. In the context
of Apache, this process is the Apache server process(i.e.,
httpd), and each of these httpd processes calls CAUSEC.
Thus calling dune_init_and_enter() in CAUSEC in
this situation does not make sense, and our Apache server
simply failed. To address this problem, we moved the
dune_init_and_enter() function call into Apache’s
source code, inside the server/main.c:main() function, which
is the main entry point in the Apache server code. And then in
our engine, we call dune_enter(), which allows a process
to enter into Dune mode. With such a change, the Apache
main process enters Dune mode once, and each httpd process
also enters Dune mode once.

C. Discussion

CAUSEC uses the CPU’s L1d cache to create a secure
environment to perform the private key operation to protect
against cold boot attacks. The experiment-based validation
mechanism demonstrates that sensitive data remains locked
inside the L1d caches during the private key computation.

The CPU we used in this work has three levels of cache.
While L1 and L2 cache is private to each core, the L3 cache is
shared among all the cores. The shared L3 cache architecture
in many modern x86 CPUs poses a challenge for us to
protect data inside the L1 cache, especially in the presence of
increasing memory pressure, resulting in data eviction from

9



the L1 cache to RAM. In order to address this issue, there are
two potential approaches:

• Using the no-fill mode. The no-fill mode is a
processor cache control feature that can be enabled on
each CPU core through the use of the control register
CR0. This limits access to the data already presenting in
the CPU cache. To prevent sensitive data leaking from the
L3 cache, while CAUSEC is running on one CPU core,
other CPU cores should be placed into the no-fill
mode. However, being forced into the no-fill mode,
applications running on other cores could suffer signifi-
cant performance degradation due to the lack of L3 cache.

• Leveraging new techniques provided by modern CPUs.
A technique called “cache allocation technology” (CAT)
[16] was introduced in Intel’s Xeon scalable CPUs such
as the Haswell processors [16] and has since been
available on many Intel processors. CAT prevents data
from being evicted from the cache. It uses a bitmask
to allocate a specific number of cache ways for each
logical processor, which ensures that the data used by a
particular application is not evicted by other applications
or processes running on the system. In other words, CAT
enables cache isolation and can therefore prevent data
evictions from shared L3 cache by allowing the user to set
a minimum amount of cache that a process is guaranteed.
Therefore, implementing CAUSEC in a system with the
CAT feature will protect sensitive from being evicted, and
at the same time, avoid the performance degradation the
first approach introduces. We will leave this as our future
work.

VI. SECURITY ANALYSIS

In this section, we provide a theoretical security analysis of
attacks on CAUSEC. We do not consider any OS-level attacks
on CAUSEC since we assume our OS is secure and free from
malware.

A. Attacks on CAUSEC

CAUSEC uses the AES master key to decrypt the encrypted
RSA private key inside the secure environment of the L1d
cache. Therefore, it is crucial to ensure that this master key
remains protected against cold boot attacks. To derive this
master key, CAUSEC employs TRESOR. Hence, all the
security features of TRESOR also apply to CAUSEC. In
particular, during early boot, TRESOR generates the master
key from the user’s password and stores it into debug registers.
As such, the master key is safe against cold boot attacks.
Finally, the buffer that holds the user’s password and all the
memories associated with these key derivation processes are
erased carefully.

B. Hardware-Level Attacks

We also consider an attack on hardware where CAUSEC
is deployed and an adversary tries to launch a cold-boot style
attack with a malicious booting USB device to extract the
cache contents. The idea is if cache lines are not cleared after

a system reboot, and the knowledge of the physical address
of corresponding cache lines will disclose the contents of the
cache. However, this approach does not work. During power-
up or reboot, internal cache contents get invalidated. Also,
even if the data prevail in the cache due to some hardware
features of the cache, a read or write operation would fetch
data from the RAM and override the existing cache content.

VII. RELATED WORK

A. Deprivileged Execution

It is not hard to understand why there are projects which
aim to move lower level code into higher level, as this
complies with the least privilege principle - a very basic
security principle. In DeHype [33], the authors propose to
move a part of the Hypervisor code from kernel level to
user level. In the context of QEMU/KVM, this basically
means move code from the kernel level component which
is KVM, to the user level component, which is QEMU. In
SUD [6], the authors propose to move device drivers from
user space to kernel space. In MicroDrivers [9], drivers are
split into a privileged kernel space code and an unprivileged
user space code. RVM [31] introduces a reference validation
mechanism which allows device drivers to execute in user
space with constrained privileges. The motivation behind this
body of research is, device drivers are a significant source of
bugs in mainstream operating systems, including Linux and
Windows [18]. Some of these bugs allow attackers to take
control of the entire operating system. If device drivers are
running in user space, then even if they are controlled by a
malicious adversary, the rest of the system may still be safe.
In CAUSEC, we share a similar motivation with these efforts.

B. Memory-less Encryption

AESSE [21], TRESOR [22] and Loop-amnesia [26] propose
full disk encryption to protect against cold boot attacks by
implementing AES inside the Linux kernel using CPU reg-
isters. AESSE uses Streaming SIMD Extensions (SSE) as a
key storage [28]. However, it causes many multimedia, math,
and 3d applications to break binary compatibility. Further-
more, due to the shortage of space inside CPU registers,
the performance of AESSE is six times slower than standard
AES implementation. TRESOR uses debug registers to store
AES keys and provides AES encryption using x86’s AES-NI
instructions. Loop-amnesia stores secret keys into machine-
specific registers (MSRs). Instead of protecting the crypto-
graphic keys from kernel space, CAUSEC leverages TRESOR
and protects cryptographic keys from user space using CPU
caches. PRIME [10] and RegRSA [35] both use the AES key
as a key-encryption key protected by TRESOR and provide
RSA implementation in registers. Both of these approaches are
implemented inside the kernel. PRIME implements a 2048-bit
RSA using Intel’s AVX [15] multimedia registers, whereas
RegRSA uses vector instructions. Copker [12] and Mimosa
[13] are developed as kernel modules and securely implement
RSA inside the CPU cache. Mimosa uses Intel’s TSX [25]
CPU feature to protect private keys against software memory
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disclosure and cold boot attacks. On the other hand, Copker
does not rely on any special CPU features. Instead, it utilizes
cache as RAM (CAR) [19] mechanism to protect against cold
boot attacks. CAUSEC adopts a similar approach as Copker
while running mostly from the user space.

C. Other Approaches against Cold Boot Attacks

BitArmor [20] is a commercial solution for cold boot
attacks. While it provides strong protection for keys when the
user is not nearby (e.g., when the computer is in hibernation
mode), it still stores keys in the RAM when the computer is in
use. White-box cryptography [7] hides fixed secret keys into
publicly available software binaries, but it introduces much
higher overhead, particularly for asymmetric cryptographic
algorithms. Moreover, if the binary is stolen, the attacker can
still encrypt/decrypt messages with the embedded keys.

Intel Software Guard Extensions (SGX) is a CPU feature
that provides a reverse sandbox for high-value applications,
even in the presence of a malicious operating system and
a compromised BIOS [4], [8]. In its threat model, only the
CPU is trusted; therefore, the RAM must be confidentiality-
and integrity-protected. To this end, it adopts a hardware-
enforced cryptographic mechanism to transparently encrypt
all the data traffic from the CPU to the RAM, and decrypt
it when the data flows back to the CPU. As a result, SGX-
protected applications are immune to cold boot attacks by
nature. However, it is subject to side-channel attacks [29], and
notable performance overhead has been observed [4].

Moreover, it only supports newer Intel CPUs while
CAUSEC generally applies to Intel’s Pentium 4 and later
and AMD’s Athlon 64 and later processors. In particular, any
processor with cache and debug registers.

VIII. CONCLUSION

We presented CAUSEC, a key computation system which
provides decryption and signing services for other appli-
cations. CAUSEC stores sensitive key information in the
L1d cache instead of the main memory. CAUSEC protects
cryptographic systems against cold-boot attacks, but unlike
several state-of-the-art defense systems which perform key
computation mainly in the kernel level, CAUSEC has a
much smaller attack surface in the kernel space. CAUSEC
accomplishes this goal via leveraging a small modified Dune
kernel module, which establishes a process-level virtualization
environment and exposes certain privileged instructions into
user space. As such, CAUSEC is able to access privileged
resources such as debug registers, interrupt flags, and cache
invalidation instructions. Our experimental results demonstrate
that CAUSEC provides the promised security and incurs
reasonable performance overhead - 11.99% in decryption rate
and 7.1% in decryption/signing requests processing when
incorporated with the Apache web server.
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