
HARM: Hardware-Assisted Continuous Re-randomization for Microcontrollers

Jiameng Shi
Computer Science

University of Georgia
jiameng@uga.edu

Le Guan
Computer Science

University of Georgia
leguan@uga.edu

Wenqiang Li
Institute of

Information Engineering, CAS
liwenqiang@iie.ac.cn

Dayou Zhang
Computer Science

University of Georgia
dayou.zhang@uga.edu

Ping Chen
Institute for Big Data

Fudan University
pchen@fudan.edu.cn

Ning Zhang
Computer Science & Engineering
Washington University in St. Louis

zhang.ning@wustl.edu

Abstract—Microcontroller-based embedded systems have be-
come ubiquitous with the emergence of IoT technology.
Given its critical roles in many applications, its security
is becoming increasingly important. Unfortunately, MCU
devices are especially vulnerable. Code reuse attacks are par-
ticularly noteworthy since the memory address of firmware
code is static. This work seeks to combat code reuse attacks,
including ROP and more advanced JIT-ROP via continuous
randomization. Previous proposals are geared towards full-
fledged OSs with rich runtime environments, and therefore
cannot be applied to MCUs. We propose the first solution for
ARM-based MCUs. Our system, named HARM, comprises a
secure runtime and a binary analysis tool with rewriting
module. The secure runtime, protected inside the secure
world, proactively triggers and performs non-bypassable
randomization to the firmware running in a sandbox in the
normal world. Our system does not rely on any firmware
feature, and therefore is generally applicable to both bare-
metal and RTOS-powered firmware. We have implemented
a prototype on a development board. Our evaluation results
indicate that HARM can effectively thaw code reuse attacks
while keeping the performance and energy overhead low.

Index Terms—microcontroller security, code reuse attack,
TrustZone, randomization

1. Introduction

Compared to PCs and smartphones, microcontroller-
based embedded devices (MCUs) are often used to per-
form specific tasks with less complexity. Therefore, they
are widely used in applications needing high reliability
and security, such as industrial control systems and med-
ical equipment. In recent years, with the emergence of
Internet-of-Things (IoT) technology, we have also wit-
nessed a wave of consumer products powered by MCUs,
such as wearables and smart home devices.

However, there are several fundamental challenges
both technologically and operationally towards secur-
ing these deeply embedded devices. First, to meet the
performance requirements, the firmware is typically de-
veloped in C/C++, which is more likely to have memory-
related bugs. Second, these devices often exclude hard-
ware support of modern defense mechanisms to reduce

cost and energy consumption, making it easier to exploit
potential vulnerabilities. Third, firmware tends to run in
the privileged mode in a flat memory layout to reduce
the overhead of switching between the unprivileged and
privileged mode [1]. Therefore, a control hijacking attack
usually gains the highest privilege over the system. Fourth,
there are multiple stakeholders involved during firmware
development, including chip vendors, third-party librar-
y/OS providers, device manufacturers, etc. This fragmen-
ted responsibility makes security hard to be guaranteed.

Memory errors can often lead to arbitrary code exe-
cution. This has become a real threat to MCU devices as
demonstrated in recent attacks [2]–[6]. Since even low-
end MCUs are equipped with memory protection units
(MPU) that can be used to enforce DEP (aka XN or
WˆX) [7], attackers cannot simply inject malicious code
to the memory of MCU devices. Instead, they tend to
rely on code reuse attacks (CRA) [8]–[13] which perform
malicious behaviors by leveraging existing code contents.
In particular, in a return oriented programming (ROP)
attack, attackers chain code snippets or gadgets scattered
over the existing code sections. MCU devices, unfortu-
nately, are vulnerable to these attacks [12], [14]. There are
two general approaches towards defending against CRAs:
prevention and mitigation.

Attack prevention techniques aim to deny exploit ex-
ecution. Whenever an anomaly is detected, the program
crashes to prevent further damage. Control flow integrity
(CFI) [15], stack canary, and memory error detector [16],
[17] are among the most studied prevention techniques.
To reduce overhead, some prevention features are even
integrated in the hardware. For example, the ARMv8.1-M
pointer authentication (PAC) and branch target identifica-
tion (BTI) extension [18] facilitates efficient CFI imple-
mentation. However, there have also been demonstrated
attacks against these protections, such as control-flow-
bending attack [19], PAC bypassing [20], exploitation of
single master canary [21], [22], etc. Attack and defense
on software security continue to be an arms race.

Attack mitigation techniques assume that exploits can
eventually happen, but aim to mitigate the breach of
system. Our work follows this direction. Randomization
is one of the most popular methods, where the layout of
the target program code is randomized (so useful gadgets

520

2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P)

© 2022, Jiameng Shi. Under license to IEEE.
DOI 10.1109/EuroSP53844.2022.00039

20
22

 IE
EE

 7
th

 E
ur

op
ea

n
Sy

m
po

siu
m

 o
n

Se
cu

rit
y

an
d

Pr
iv

ac
y

(E
ur

oS
&

P)
 |

 9
78

-1
-6

65
4-

16
14

-6
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
EU

RO
SP

53
84

4.
20

22
.0

00
39

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

cannot be collected) [23]–[28]. In these solutions, a unique
code layout is generated for each program execution.
This approach cannot be directly applied to MCU firm-
ware, since the firmware is typically statically linked in a
position-dependent fashion and stored in the flash memory
for in-place execution. Recent research proposed to static-
ally add code diversity to MCU firmware [29], where each
device has a different copy of the firmware. Unfortunately,
it can be circumvented by more advanced attacks that
combine a memory disclosure attack and CRA. Specific-
ally, the attacker can repeatably exploit a memory dis-
closure vulnerability to read the firmware’s code and then
compile a ROP chain on-the-fly remotely. Conceptually,
this is similar to Just-In-Time ROP (JIT-ROP) [30], [31]
and Blind ROP (BROP) attacks [32] on PC or smart-
phones, although the attack cannot be conducted locally
on the victim MCU device due to the lack of scripting
environment. Execution-only-memory (XOM) [33], [34]
as an attack prevention technique, has the potential to
defeat naïve direct JIT-ROP attacks because it prevents
code leakage. However, it can be circumvented by indirect
JIT-ROP attacks [31], [35] where code pointers can be
harvested from (readable) data regions.

This work proposes a new system called HARM for
ARM-based MCU devices to mitigate all the mentioned
CRA attacks with continuous re-randomization. To en-
able randomization, HARM moves the code from flash to
SRAM for execution. To prevent advanced CRA attacks,
HARM performs randomization continuously. By keeping
the randomization period shorter than the time required for
compiling a ROP chain, HARM effectively invalidates JIT-
ROP attempts. Compared with existing re-randomization
solutions geared towards x86/x64 platforms, our approach
addresses many non-trivial challenges unique to MCU.

Existing re-randomization solutions [36]–[41] heavily
rely on the rich runtime environment in commodity OSs,
such as the dynamic loader, signals, kernel, etc. None of
them is standard in MCUs. HARM instead leverages ARM
TrustZone to build a specifically engineered runtime sys-
tem to assist re-randomization. ARM TrustZone for MCUs
has been announced in 2015 with the introduction of
ARMv8-M architecture [42]. It creates a trusted execution
environment (TEE) that can provide security-critical ser-
vices to the firmware. The TEE and the firmware run in the
secure world and normal world respectively. Our runtime
system resides in the secure world and periodically in-
vokes non-bypassable requests for randomization. Upon
the request, it suspends the firmware execution in the
normal world temporarily to complete the randomization.
Finally, it updates the internal tables and adjusts impacted
code/data references of the target code before resuming
the firmware execution. By bookkeeping security-related
data, such as the real locations of functions in the secure
world, attackers cannot easily learn the code locations and
launch CRA attacks.

MCU firmware mostly adopts static linking in favor
of run-time performance. Therefore, the code sections,
which are position dependent, are merged into a con-
tinuous region in flash. If we follow existing randomiz-
ation approaches that relocate the entire code region in
the available address space, not enough entropy can be
provided since MCUs only have SRAM of hundreds of
KB. We therefore conduct more fine-grained randomiz-

ation at function level. By shuffling the functions, more
entropy can be added. Position dependent code in firm-
ware also means after each randomization, HARM has to
track and fix lots of broken code/data references caused
by relocation. To minimize the performance overhead, we
propose a set of binary rewriting rules to pre-process the
binary. It essentially adds an indirection layer that remaps
encoded code pointers to their real targets, facilitating
smooth re-randomization.

However, if the attackers know the fixed mapping
information between the code pointer and the target, they
can corrupt the control data with validly encoded code
pointers. This degrades HARM to a coarse-grained CFI
mechanism. To prevent this from happening, we make
sure that the rewritten firmware, when leaked, can never
disclose such mapping information. To defeat brute-force
attempts that learn the mapping gradually, HARM triggers
a complete binary rewriting once HARM detects an unex-
pected reboot. Through complete binary rewriting, HARM
directly updates the mapping information stored in the
secure flash. This will nullify prior efforts in the brute-
force attack.

HARM does not rely on any firmware-specific features
or interfaces. Rather, it only assumes the hardware inter-
face specified in ARM manuals. Therefore, it is inherently
OS-agnostic. Common in the multi-party development
environment, the device manufacturers need to integrate
third-party software. Through binary rewriting, HARM en-
ables protection without relying on the access of the
source code; thus, intellectual property can be kept secret.

We have implemented a HARM prototype on an
ARMv8-M development board, and evaluated the per-
formance with five real world applications and a bench-
mark under different re-randomization frequencies. Our
results suggest HARM can support re-randomization at
a higher frequency than needed to defeat ROP attacks,
while still keep the performance and energy overhead
low. Specifically, we observed a maximum overhead of
5.8% (others were negligible) when HARM performs a
randomization every 200 ms, which is much shorter than
the measured time needed by a real JIT-ROP like attack.

We have made the following contributions:

• We proposed the first OS-agnostic continuous ran-
domization solution for ARM MCUs based on
TrustZone-M extension.

• We proposed a set of new binary rewriting tech-
niques to work with the proposed continuous re-
randomization solution.

• We implemented a prototype on an ARM Cortex-
M based development board.

• We measured the minimum time required for an
attacker to launch a JIT-ROP like attack in the
idealistic setting (~600 ms). We demonstrated that
HARM can defeat such attacks with small overhead.

The source code of our HARM prototype is available
at https://github.com/MCUSec/HARM.

2. Background

2.1. ARM Microcontrollers

MCUs follow the System-on-Chip (SoC) design that
integrates processor, RAM, and I/O peripherals on the

521

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

xPSR
PC (exception return

address)
LR

R0-R3, R12

...

...

E
xc

ep
tio

n
fra

m
e

Figure 1. Exception frame automatically pushed by hardware

same silicon. This does not only cut the cost, but also
decreases power consumption and improves system reli-
ability. In this work, we focus on ARM Cortex-M series
MCUs, which receive the broadest adoption and have
widespread support from software companies [43].

Architecture: Mainstream ARM MCUs are powered by
the ARMv7-M or ARMv8-M architecture. They adopt the
Thumb-2 instruction set which is optimized for resource-
constraint chips. It has 13 general-purpose registers ran-
ging from R0 to R12, in addition to the stack pointer (SP
or R13), the link register (LR or R14), and the program
counter (PC or R15). Besides, there are several system
registers used to configure the working mode.

Operating Modes: The processor runs either in thread
mode or handler mode. The handler mode is specifically
designed to deal with exceptions and always runs with
high privilege. The thread mode can either be privileged
or unprivileged.

Exception Model: An exception traps the processor into
the privileged handler mode. There are 15 system-defined
exceptions along with the peripheral specific interrupts.
The addresses of the handlers are stored in a table called
Vector Table, whose base address is determined by the
Vector Table Offset Register (VTOR), with the default
value of zero. After powering on, the hardware reads the
address of the reset handler from the vector table and starts
booting from reset handler.

When an exception is triggered, the control flow is
transferred to the corresponding handler according to the
vector table. The operating mode is also automatically
switched to the handler mode. Then, the processor context
before the exception is pushed into the post-exception
stack. This is called an exception frame as shown in
Figure 1, which includes the status registers (xPSR),
program counter (PC), link register (LR), and general-
purpose registers R12 and R0-R3. In the meanwhile,
the link register LR is set with a special value called
EXC_RETURN. When returning from an exception handler
(i.e., jumping to EXC_RETURN), the values contained in
the exception stack frame are restored to the correspond-
ing registers so that the control flow can resume from the
point right before exception.

Memory Protection Unit: The Memory Protection
Unit (MPU) enforces memory access permissions
(read/write/execution) for different privilege levels. For
example, DEP can be easily enforced by MPU.

2.2. ARM TrustZone for Microcontrollers

TrustZone-M is a security extension to Cortex-M
series MCUs. It separates the system resources into secure
ones and non-secure ones. Correspondingly, the processor

runs in two states, namely secure state and normal state.
When the processor runs in the secure state, it can access
all the resources. Otherwise, it can only access non-secure
resources. To access secure resources, the normal world
software requests a secure service in the secure world.
When the normal world accesses secure resources, a newly
introduced exception called SecureFault will be triggered.

2.2.1. Resource Partitioning. A memory region can be
one of the three types: Secure (S), Non-secure (NS), or
Non-secure Callable (NSC). An NSC region is a special
kind of secure resource used for calling secure functions.
It may hold an instruction called Secure Gateway (SG).
The normal world can directly jump to an SG instruction
in an NSC region and then further switch to the secure
world. But jumping from the normal world to an S region
directly or to any other instructions in an NSC region trig-
gers a SecureFault. Following the SG instruction is usually
a jump table to secure functions. This instruction sequence
in the NSC region is called a veneer. To configure a
region, Secure Attribute Unit (SAU) or Implementation
Defined Attribution Unit (IDAU) can be used. Both of
them are only accessible in the secure world.

2.2.2. World Switching. The firmware can switch
between worlds via either the interrupt mechanism or
dedicated instructions such as SG. ARM optimizes the
world switching mechanisms to ensure the real-time prop-
erty. For example, the SG instruction requires merely 3
CPU cycles (cf. §2.2 of [44]). As a comparison, a normal
memory load/store instruction takes 1-2 cycles and the
function call instruction (BL) takes 3 cycles.

3. System Overview

3.1. Threat Model and Assumptions

We consider a strong threat model in which the at-
tacker can exploit memory errors to hijack the control
flow of the firmware execution. An attacker can easily
achieve this goal through buffer overflow or pointer sub-
terfuge. For example, he can overwrite a return address
on the stack and use write-what-where style vulnerability
to overwrite an entry in function tables. He can further
leverage CRA like ROP to run any existing code. We
further assume the firmware has memory disclosure vul-
nerabilities that an attacker can exploit to launch both
direct and indirect JIT-ROP like attacks [30], [31], [35].

We assume that the MCU devices are equipped with
MPU, which is a common security feature even on low-
end MCU chips. Typically, MPU is used to isolate the
privileged code and data. However, most firmware is
currently developed to run entirely in the privileged mode
to reduce the overhead of privilege switching. There-
fore, HARM leverages this hardware feature exclusively
to enforce DEP [7]. This assumption is widely adopted
in related work on MCU security [1], [21], [29], [33],
[45]–[47]. HARM depends on TrustZone, which is avail-
able on ARM’s current-generation MCU chips. The code
running inside the secure world is assumed to be bug-free.
Although there have been many vulnerabilities disclosed
in the TEE implementation of smart-phones [48], TEE
is still considered more secure because of the reduced

522

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

attack surface. This assumption is commonly accepted in
TrustZone-based security solutions [49]–[51]. Finally, we
trust our compiler and the added instrumentation.

We support multi-party development environment
where the device manufacturers integrate libraries
provided by other companies. The third-party vendors do
not need to disclose their source code. However, they
are required to keep the libraries unstripped. This holds
in practice because the third-party libraries need to keep
essential symbols to be linkable with libraries from others.

3.2. Challenges

Technical Challenge I: Pointer Tracking. Re-
randomization changes the code layout so existing
pointers would become invalid after a randomization
cycle. To retain the originally refereed objects, previous
work tracks and updates the pointers via heavy
instrumentation [36], [38]. To reduce the extra run-time
overhead caused by pointer tracking, in HARM, we use an
indirection layer to encode pointers into fixed indexes to
a reference table. Combining off-device binary rewriting
and simple run-time reference update, HARM eliminates
the need for dynamic pointer tracking.

Technical Challenge II: Fixed Code Pointer Indexes.
Although using an indirection layer effectively avoids the
overhead of pointer tracking, fixed mapping between the
code pointer and the target means attackers can still hijack
the control flow if they can recover the mapping informa-
tion (consider HARM as a coarse-grained CFI mechanism).
To prevent this from happening, we make sure that the
rewritten firmware, when leaked, can never disclose such
mapping information. To defeat brute-force attempts that
learn the mapping gradually, HARM triggers a complete
binary rewriting once it detects an unexpected reboot.
Through complete binary rewriting, HARM directly updates
the mapping information stored in the secure flash. This
will nullify prior efforts in the brute-force attack. Although
a complete re-randomization consumes more time, it only
happens during abnormal rebooting.

Technical Challenge III: Bookkeeping of Confidential
Metadata. Unlike full-fledged OSs, MCU firmware runs
on single address space, meaning that all the code in-
cluding the user tasks and kernel (if any) are mixed. This
makes it quite challenging, if not impossible, to conceal
confidential information such as the bookkeeping of map-
ping information. HARM leverages TrustZone to address
this problems. Specifically, we run the secure runtime
to isolate the confidential information from the firmware
with strong hardware-level guarantee. An alternative is to
place the HARM runtime in privileged mode, and the target
firmware in unprivileged mode, with the help of MPU.
However, this not only requires refactoring existing code,
but also necessitates applying Software Fault Isolation
(SFI) [52] to sandbox the untrusted interrupt handlers
(which must be executed in privileged mode). Using MPU
removes HARM’s dependence on TrustZone but incurs
higher performance overhead since SFI performs less
optimally on ARM Cortex-M [33].

Technical Challenge IV: Interrupt. Traditional software
rewriting tools assume a user-space view in which the exe-
cution is oblivious to interrupts. However, MCU firmware

Library 1

Library 2

Library 3

ELF
Image

Compile & link

Information
Extraction

Off-Device
Binary Rewriting

Analyze & rewrite

Binary
Metadata

Refined
Binary

Output

(a) Off-device analysis and rewriting

Sandbox (r-x, rw-)
Foo Main

Bar Reset

Metadata (---, rw-)
Func.
Tab

Direct
Call Tab.

Ret. Addr.
Tab.

Randomizer (---, rwx)Randomizer (---, rwx)
Main Foo

Reset Bar

Flash memory (r--, r--)

Func.
Disp. Tab.

Indir. Call
Tab.

Func. Ptr.
Tab.

(b) On-device re-randomization (for each memory region,
we mark the access permissions for normal world and secure
world respectively)

Figure 2. HARM workflow

mixes user tasks and interrupt handlers (or OS functions)
together. This brings about unexpected control flow de-
viations that would cause system crashes if not handled
properly. Our approach automatically identifies exception
handlers and applies instrumentation correspondingly. Be-
ing interrupt-aware, HARM transparently supports multi-
tasking firmware powered by RTOSs.

3.3. Design Overview

HARM features continuous function-level re-
randomization as a moving-target mitigation to CRAs for
MCUs. It includes an off-device analysis and rewriting
module, and a secure runtime module. To relocate
functions around on-the-fly, we intentionally move the
code section from the read-only flash memory to an
SRAM region in the TrustZone normal world. We call
this SRAM region a sandbox. Since the addresses
of functions (and the data objects mingled with the
code) are changed during re-randomization, we have to
correspondingly update the code/data pointers that refer to
them. Traditionally, tracking and updating the influenced
pointers incurs significant performance overhead. In
our solution, we leverage an offline analysis stage
to pre-process the ELF-format firmware. The outputs
include a refined firmware image and the accompanying
metadata for fast reference adjustment. Our secure
runtime, which resides in the TrustZone secure world,
periodically issues re-randomization requests. In each
re-randomization cycle, it shuffles all the functions
in the sandbox and leverages the metadata to update
the influenced pointers efficiently. We also leverage
TrustZone protection [53], [54] to prevent the firmware
in the sandbox from accessing MPU. Otherwise, DEP
could be bypassed.

Off-device Analysis and Rewriting: As shown in Fig-
ure 2(a), the off-device analysis and rewriting module
takes the linked firmware image (in ELF format) as input
and outputs a refined binary and metadata (i.e., sev-
eral tables) to facilitate efficient re-randomization. First,
HARM parses the symbol table of the target image and

523

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

extracts the information about the location and size for
each function. Then, it disassembles each function and
identifies location-sensitive instructions. We must accom-
modate these instructions to keep the firmware valid after
each re-randomization. Specifically, HARM ensures that
code/data pointers are adjusted to the valid ones prior to
dereferencing. We employ two strategies to ensure this.
For some instructions (e.g., direct calls), the adjustment is
performed on-device during re-randomization, leveraging
the metadata. For the rest (e.g., indirect calls and func-
tion returns), HARM directly overwrites them off-device,
meaning that they do not need to be changed at run-time.
This is enabled by explicitly invoking secure services.
Treating location-sensitive instructions differently allows
us to achieve optimized performance and reduce memory
consumption.

On-device Re-randomization: As shown in Figure 2(b),
the target firmware runs in the sandbox of the normal
world and the secure runtime runs in the secure world. In
this way, the secure runtime does not need to concern its
own randomization. It has access to the metadata extracted
off-device and is responsible for bootstrapping the firm-
ware in the normal world and performing the continuous
re-randomization. When the device powers up, the secure
runtime performs the initial randomization, which copies
the functions from the flash memory into the randomized
locations in the sandbox. It also maintains a table to store
the current address for each function. Then the firmware
starts executing from the newly allocated reset handler.
During device operation, the randomization is performed
periodically, triggered by a non-bypassable secure timer.
In each randomization cycle, after shuffling the functions
and updating the tables, the secure runtime performs
on-device reference adjustment in place. This process
is assisted by the extracted metadata. The metadata is
confidential, so it should not be leaked overtime under
a persistent attack. Therefore, HARM also updates the
metadata during each device reboot. Our hypothesis is that
whenever the attacker tries to learn the mapping between a
function and its index value via brute-force, the firmware
is likely to crash due to a wrong target function being
called (Section 6.3).

4. Off-device Binary Analysis and Rewriting

In this section, we explain binary rewriting, in particu-
lar, which instructions need to be rewritten, why they need
to be rewritten, and how they are rewritten. The output of
this module includes a refined binary and the accompany-
ing metadata to assist efficient re-randomization.

4.1. Metadata

HARM manages functions by assigning each of them
with a unique index. The metadata are maintained in six
tables. Five of them are static and extracted during off-
device analysis and one is dynamically constructed during
firmware execution. All these tables are only accessible by
the secure runtime. First, the function table records the
location and size of each function in the flash memory.
Second, the direct call table records the offsets of direct
call instructions within each function. It is used for on-
device direct call adjustment. Third, the return address

table maps a function return address, represented by an
index, into a function index plus the offset in this function.
It is used by the secure runtime to recover the return
addresses of function calls. During each randomization
cycle, the secure runtime copies each function from flash
according to the function table to a random location in
the sandbox. The current addresses of the functions are
maintained in the fourth table called function dispatch
table, which is constructed and maintained dynamically
at run-time. It is used by the secure runtime to calculate
real code pointers, including indirect call targets and return
addresses.

The remaining two tables are indirect call table and
function pointer table, which record the offsets of indirect
call instructions and function pointer initialization points
respectively. These two tables are only referenced in an
abnormal system reboot to update the indexes for func-
tions. This prevents determined attackers from gradually
learning the function index information (Section 6.3).

4.2. Binary Rewriting

When functions are shuffled, references to existing
data/code objects become invalid. We collectively call the
influenced instructions as location-sensitive instructions.
Generally speaking, these instructions can be classified
into two categories – those refer to absolute addresses and
those refer to relative addresses. Absolute address access-
ing instructions include indirect calls, function returns, ex-
ception returns, (some) jump tables, etc. Relative address
accessing instructions include direct calls, (some) jump
tables, etc. HARM disassembles each function to obtain
those instructions needing instrumentation. After applying
instrumentation, the memory layout of the binary changes,
which invalidates the offset fields of some instructions.
Therefore, HARM performs a second round of rewriting
to adjust these offsets. Note that the second round of
rewriting preserves memory layout.

4.2.1. Code Pointer Encoding. The code pointers, such
as the function pointers and return addresses, refer to abso-
lute addresses. They become invalid when the locations of
involved functions are changed. We address this problem
by encoding these addresses to be invariable despite the
continuous randomization. Specifically, a code pointer is
represented as an index to the corresponding function and
an offset within the function (i.e., <index|offset>).
The corresponding dereferencing instruction is overwritten
by a secure call, which transforms the encoded point-
ers into the actual address based on the aforementioned
function dispatch table. Specifically, the actual address
is calculated as function_base(index) + off-
set. For return address recovery, it has to go through
an additional table called return address table to get
<index|offset> before applying the result to above
formula.

4.2.2. Direct Calls. A direct call invokes a function
whose address is relative to the current PC. The offset
is directly encoded as part of the call instruction, for ex-
ample, the BL instruction, as shown in line 5 of Listing 1.
After re-randomization, all the branching targets of BL
instructions become invalid. In addition to branching to

524

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

the target, the BL instruction implicitly stores the return
address into the link register (LR). The LR register is used
by the callee to return to the caller. Since the caller might
be moved, the return address in LR becomes invalid as
well.

1 10000: push {r4-r7, lr}
2 ...
3 1001A: mov r0, #1
4 1001C: mov r1, #2
5 - 1001E: bl foo
6 - 10022: ...
7 + 1001E: movw lr, #ret_index ; LR=ret_index
8 + 10022: b foo
9 + 10026: ...

Listing 1. Direct Call Rewriting

We address this problem by replacing the BL instruc-
tion with two instructions as shown in Listing 1. First,
to make the return address valid across randomizations,
we encode it (0x10026 in the example) with a unique
return address index (ret_index) to the LR register
(line 7). The return address table maintains the mapping
information from ret_index to the corresponding re-
turn site encoded by <index|offset>. Note that all
of these can be determined statically. In Section 4.2.4,
we discuss how the callee recover the real return ad-
dress from the encoded LR register. It is also important
to note that if we directly encode the return address
as <index|offset> in instrumentation, the mapping
information between function indexes and functions is im-
mediately leaked, making CRA possible (see Section 6.3).
Adding an indirection layer like return address table pre-
vents this from happening. Second, the branching instruc-
tion is replaced with a B instruction which directly jumps
to the target. The secure runtime adjusts the offset fields in
the B instructions after each randomization, based on the
direct call table and the current function dispatch table.

4.2.3. Indirect Calls. Indirect calls are always translated
to “BLX Rn” in ARM (line 6 of Listing 2), where the
branching target is stored in register Rn. In HARM, we
encode function pointers at their initialization points. With
this design, the encoded function pointers can propagate
as before and a BLX instruction always jumps to an
encoded pointer, which is invalid from the viewpoint of
the processor. Thus, code pointers need to be decoded
before dereference.

1 10000: push {r4-r7, lr}
2 ...
3 1001A: ldr r3, foo
4 1001C: mov r0, #1
5 1001E: mov r1, #2
6 - 10020: blx r3
7 - 10024: ...
8 + 10020: movw lr, ret_index ; LR=ret_index
9 + 10024: mov r12, r3 ; R12=R3

10 + 10028: b secure_indirect_call_veneer
11 + 1002C: ... ; position of foo return

Listing 2. Indirect Call Rewriting

To find out the initialization points of function point-
ers, HARM searches the relocation table for entries of type
R_ARM_ABS32. Once HARM finds such an entry and
confirms that it corresponds to a real function pointer,
the pointer value in the binary is encoded. For an indirect
call target, the offset field of the encoding is always zero
because the target always points to the start of a function.
To decode function pointers at dereference points, the

“BLX <Rn>” is replaced by two instructions (line 9 and
10 in Listing 2). In line 9, we assign the intra-procedure
call scratch register R12 with the encoded pointer. In
line 10, the R12 register is used as the parameter to the
veneer function that calls secure service to jump to the
real target (Section 4.2.5). Similar to direct calls, the BLX
instruction also implicitly stores the return address into
the LR register. We follow the same design to encode the
return address, as indicated in line 8.

4.2.4. Function Returns. ARM does not have a dedicated
return instruction but relies on popping the return address
from the stack or jumping to the return address in the
LR register directly. Typically, in the prologue of a non-
leaf function, the callee-saved registers and the LR register
are pushed onto the stack. In the epilogue, callee-saved
registers are restored from the stack, and the saved LR
register is directly popped to PC, resulting in a return
from the callee. The process is shown in line 2 and 4
of Listing 3. Since LR is encoded, we cannot directly
pop it from the stack. We rewrite the epilogue by (1)
removing PC from the popped register list (line 5), (2)
manually retrieving the saved LR from the stack (line 6),
and (3) branching to the veneer function that calls the
secure service to jump to the real return address (line 7).
A leaf function typically returns using the instruction “BX
LR” without the stack. We directly replace this instruction
with a call to the veneer function.

1 -- Case 1: Non-leaf function --
2 10000: push {r4-r7, lr}
3 ...
4 - 10030: pop {r4-r7, pc}
5 + 10030: pop {r4-r7} ; remove PC from pop list
6 + 10032: ldr lr, [sp], #4 ; retrieve LR from stack
7 + 10036: b secure_return_veneer
8

9 -- Case 2: Leaf function --
10 ...
11 - 10030: bx lr
12 + 10030: b secure_return_veneer

Listing 3. Function Return Rewriting

4.2.5. Secure Call Veneers. As shown in Listing 2, 3
and, we use the B instruction to branch to veneer functions
(secure_indirect_call_veneer and secure_-
return_veneer) as a springboard to secure services.
We discuss how secure runtime can decode the code
pointers and jump to the intended addresses in Section 6.2.
The reason of using the veneer functions is that the ad-
dresses of secure services are typically far from the normal
world, and the offset cannot be encoded into a single B
instruction (the offset must be within ±16MB). In veneer
functions, we invoke indirect calls to the secure services
so that the offset limitation can be removed. Note that
veneer functions are written in assembly and is position-
independent. Therefore, they can also be randomized.

4.2.6. Jump Tables. The jump table can be implemented
using either the Table Branch instructions or memory load
(LDR) instruction, depending on the optimization level and
the table size.

Using Table Branch Instructions: There are two table
branch instructions, namely TBB (Table Branch Byte) and
TBH (Table Branch Half-word). Table branch instructions

525

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

(e.g., TBB <Rn, Rm>) cause a PC-relative branch-
ing based on a table of offsets. The location of the table is
specified by Rn, while the index of the table is specified
by Rm. TBB and TBH are very similar except for the size
of table entries. In HARM, the real offset to the target
might change due to the instrumentation. However, since
the offset is relative, we can statically fix the references
in the table. We illustrate an example of using TBB to
implement jump tables in Appendix A.
Using Load Instructions: A limitation with jump table
implementations using table branch instructions is that the
reachable offset is limited (510 bytes for TBB and 131,070
bytes for TBH). Also, they can only branch forward. To
address these limitations, based on our empirical study,
compilers often emulate the jump table using normal load
instructions. Specifically, the jump targets are indicated
with a table of absolute addresses as shown in Listing 4.

1 10034: mov r4, #0 ; default case
2 ...
3 - 10050: add r3, pc, #0 ; r3 points the table
4 - 10052: ldr pc, [r3, r2, lsl #2]
5 - 10054: .word 0x10060+1 ; branch to case 0
6 - 10058: .word 0x10064+1 ; branch to case 1
7 - 1005C: .word 0x10034+1 ; branch to default case
8 - 10060: ldr r4, [r0] ; case 0
9 - 10062: b 0x10066

10 - 10064: ldr r4, [r0, #4] ; case 1
11 - 10066: ...
12 + 10050: movw r3, #0 ; R3[15:0]=0
13 + 10054: movt r3, #2 ; R3[31:16]=0x2
14 + 10058: ldr r3, [r3, r2, lsl #2]
15 + 1005C: add pc, r3
16 + 1005E: ldr r4, [r0] ; case 0
17 + 10060: b 0x10064
18 + 10062: ldr r4, [r0, #4] ; case 1
19 + 10064: ...
20 ...
21 + 20000: .word 0xFFFFFFFE+1 ; branch to case 0
22 + 20004: .word 0x00000002+1 ; branch to case 1
23 + 20008: .word 0xFFFFFFD4+1 ; branch to default case

Listing 4. Rewriting Jump Table Using Load Instructions

In the example, the register R3 is loaded with the
base of the table (line 3), which is 0x10054. The
table contains absolute addresses of the jumping targets
(line 5-7). Then a table entry indexed by R2 is loaded
to PC to jump to the target (line 4). Unfortunately,
the base of the jump table (R3) becomes invalid after a
randomization cycle, and thus line 4 would branch to
an unpredictable location. We solve this problem by fixing
the location of the jump table and making the jump table
entries position-independent. More specifically, we follow
the steps below. (1) Move the jump table to an unmapped
fixed location (e.g., 0x20000). (2) Use the MOVW and
MOVT instructions to load the base address of the jump
table (line 12-13). (3) Load the table entry (line
14). (4) Add the value of the loaded entry to PC to branch
to the real target (line 15). (5) Correct the jump table
and make it position-independent. Specifically, the new
entry should be the offset from the target to the address
of the instruction “ADD PC, R3” (line 21-23).

The rewritten jump table entries are shown in line
21-23 of Listing 4. After rewriting, the jump table
becomes position-independent and thus the entries do not
need to be updated during the randomization. We place the
table in the read-only flash to reduce memory consumption
and prevent memory corruption on it.

4.2.7. Reference Adjustment. The aforementioned bin-
ary rewriting is not in place. That is, the lengths of

new instruction sequences are not equal to that of the
original instruction sequences. This inevitably changes the
memory layout of the target binary and invalidates several
references. We run a second round of binary rewriting to
fix these issues. Reference adjustment does not introduce
new changes to the memory layout.

Internal Branches: The internal branches jump relatively
inside a function. These instructions include B, CBNZ,
CBZ, TBB, TBH. We overwrite the corresponding offsets
encoded in the instructions.

Literal Pools: Restricted by the instruction length, ARM
instructions cannot encode arbitrary immediate values.
The literal pool is a widely used workaround that embeds
arbitrary constants within the text section. ARM code
then uses PC-relative addressing to load these values
instead. With the changed memory layout, we have to
adjust these offsets correspondingly. Moreover, literals
themselves must be word-aligned, which might be violated
by the instrumentation. HARM meets this requirement by
padding the two-byte NOP instructions before the literal
pool.

Read-only Data: The read-only data, such as the string
constants or other global constants are placed at the end
of the text section. The absolute addresses of these data
objects are placed in the literal pool so that the program
can refer to them indirectly. We have to adjust these abso-
lute addresses to reflect the new memory layout. Similar
to identifying function pointers, we search the relocation
table for entries that (1) are of type R_ARM_ABS32, and
(2) refer to the read-only data region.

Data Section: In the MCU firmware, the data section
needs to be copied from the flash to the SRAM for
write accesses. This is typically completed during device
booting and the firmware relies on the symbol _sdata or
_etext to identify the location of the data section. Since
the expansion of the text section may overlap with the data
section, we have to move the latter to a higher address
and correspondingly update the symbol of _sdata and
_etext.

4.2.8. Power Saving Mode Support. One of the defining
characteristics of microprocessors is their ability to com-
pute with a small amount of energy, and to aggressively
optimize on energy, the device can be placed into sleep
mode frequently. If randomization frequently disrupts the
sleep mode, such benefit diminishes. WFI (i.e., Wait For
Interrupt) is the special instruction that the system soft-
ware uses to put the system into deep sleep until an inter-
rupt arrives. To prevent the secure timer from immediately
waking the system, WFI instructions are instrumented
to invoke the energy service in the secure runtime via
a secure call veneer named secure_wfi_veneer to
allow for secure enter and exit of energy saving state.

5. Interrupt Support

So far, as with other traditional binary rewriting tools,
HARM instruments the firmware following the semantics
of instructions, ensuring the same logic with the original
one. However, interrupt, which is indispensable for MCU
devices, conflicts with HARM in terms of code pointer
encoding. Before presenting these conflicts, we briefly

526

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

review how interrupt works. As described in Section 2.1
and Figure 1, when an exception happens, the hardware
pushes processor context before the exception into the
post-exception stack, so-called exception frame. Exception
return is just a normal return to EXC_RETURN, which
triggers the hardware to restore the context to the original
mode.

When an exception takes place, the exception return
address on the exception stack is an absolute value. If a
re-randomization is performed in the middle of interrupt
handling, the return address becomes invalid. Directly
resuming from it crashes the execution. To solve this,
we identify all the exception handlers and instrument the
handler entries to invoke a secure service that encodes the
exception return addresses as <index|offset> on the
exception stack.

When exception returns, the encoded return address
cannot be used to load PC directly. We need to cor-
respondingly decode it. Since an exception handler is
also a function that has been instrumented following
the rules of function return, secure_return_veneer
mentioned in Section 4.2.4 is invoked. However, the en-
coding of function return address and exception return
address are different (ret_idx in the LR register vs.
<index|offset> on the exception stack). The veneer
function secure_return_veneer therefore checks
whether this is an exception return or a normal function
return (i.e., if the LR register is EXC_RETURN or not) and
treats them correspondingly. More details are provided in
Section 6.2.

Supporting interrupts allows the firmware to respond
to external events timely. More importantly, it is the
foundation for implementing OS functions such as task
scheduling. Supporting OSs is a remarkable feature of
HARM, considering that OSs are being widely used to
meet the multi-tasking requirements of IoT development.
In Appendix D, we showcase how HARM transparently
supports task scheduling in MCU OSs.

6. Secure Runtime

The secure runtime executes in the TrustZone secure
world, and thus is isolated from the sandbox in the normal
world. It configures security-related registers to separate
secure and non-secure resources, enforces DEP for the
sandbox via MPU, and disables MPU access from the
normal world. It also performs re-randomization period-
ically, maintains current function locations, adjusts offsets
of direct call instructions, and provides secure services
to encode/decode code pointers. When system reboots, it
needs to re-randomize the indexes for functions.

6.1. Firmware Randomizer

The firmware randomizer is the core of the secure
runtime. It is responsible for shuffling the firmware func-
tions periodically. The randomization is triggered by the
secure SysTick exception, which is essentially a pro-
grammable timer. Note that secure exceptions are non-
bypassable by the normal world. Inside the secure Sys-
Tick handler, HARM makes sure that the processor was
not serving a secure function (because a re-randomization

invalidates the result of the secure function). If this is sat-
isfied, the randomizer performs randomization as follows.
(1) Retrieve the suspended address (i.e., PC) from the ex-
ception stack frame and encode it as <index|offset>.
(2) Based on the function table (see Section 4.1), ran-
domizer copies each of the functions in the flash to a
random location in the sandbox. Meanwhile, the function
dispatch table, which maintains the current location of
each function, is updated. (3) Adjust the offset fields of
the direct call instructions based on the direct call table
and the new function dispatch table (see Section 4.2.2). (4)
Based on the new function dispatch table, decode <in-
dex|offset> as the new address to resume execution.
The new address is stored in the PC slot of the exception
stack frame.

6.2. Secure Services

As illustrated in Section 4.2, HARM relies on services
provided by the secure runtime to enable power saving
mode and decode code pointers, including indirect call
targets, function return addresses, and exception return
addresses. The secure services are implemented as NSC
veneer functions (see Section 2.2.1). They are written
in pure assembly for optimized performance. Moreover,
they are declared as naked to prevent the compiler from
generating extra code. Our assembly code ensures that no
unnecessary context maintenance code is emitted.

Indirect Call Target Decoding: It is called by se-
cure_indirect_call_veneer in Listing 2. It uses
the scratch register R12 to pass the encoded code pointer.
After extracting the function index (offset is always zero),
it looks up the function dispatch table for the current
address of the target function. The result is stored in R12,
which is used to branch to the target function via “BXNS
R12”.

Return Address Decoding: It is called by secure_-
return_veneer in Listing 3. If LR is not equal to
EXC_RETURN, it is a normal function return and LR
contains ret_idx. HARM queries the return address table
to get the index of the caller function and the offset,
following by looking up the function dispatch table to
calculate the actual return address. The result is loaded
to register LR. Finally, it branches to the intended caller
function via the “BXNS LR” instruction. If LR is equal
to EXC_RETURN, indicating an exception return, HARM
locates the exception return address on the stack and
performs decoding using the current function dispatch
table directly. Then an exception return can branch to the
intended address.

Exception Return Address Encoding: This secure ser-
vice is called at the entry of exception handlers. It encodes
the exception return address as <index|offset> on
the exception stack, which is later decoded by secure_-
return_veneer on exception returns.

Power Saving Mode Support: When secure_wfi_-
veneer is invoked, this service disables interrupts and
suspends the firmware randomizer. Subsequently, it turns
the MCU into sleep mode via a WFI instruction. When
the MCU is woken up by an interrupt, it re-enables the
secure SysTick exception to resume the firmware ran-
domizer. Finally, it enables interrupt to handle the pending
interrupts.

527

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

6.3. Function Index Re-randomization
Encoded Code Pointers: In a control flow hijacking
attack, control-data (data that are loaded to PC at some
points) include the function pointers, return addresses
on the stack, and the return addresses on the exception
frame. They are encoded as <index|0>, <ret_idx>
and <index|offset> respectively. Their leakage does
not reveal anything about code itself, defeating JIT-ROP
like attacks. However, the attacker does have the capability
to overwrite the control-data with a malicious but validly
encoded data (e.g., a different index). If that happens, the
firmware blindly invokes an unknown function or returns
to another valid return site (i.e., any instruction following
a function call). To really control the hijacked program
to run intended code, like return-to-libc or ROP, the at-
tacker needs to further determine the mapping information
between the indexes and functions. HARM makes sure
that such mapping information cannot be inferred from
the leaked code, and leverages TrustZone to prevent the
mapping table from being directly read out. This forces
attackers to brute-forcing.

Persistent Brute-force Attacks: Our function-level ran-
domization works by shuffling functions, resulting in suf-
ficient entropy even within a small address space (SRAM).
Entropy is measured by possible indexes of a function. In
the current prototype, the search space for one function is
therefore 216. With a control-flow hijacking vulnerability,
a determined attacker could try all possible index values.
Such attempts can be persistent. It lasts until useful func-
tion mapping information is recovered to launch a CRA
attack as mentioned before.

Solution: We observe that when a brute-force trial fails,
the firmware is highly likely to crash. Due to the watch-
dog mechanism on MCUs, this will eventually lead to a
device reboot. Therefore, HARM re-randomizes the func-
tion indexes on each unexpected device reboot. This pro-
cess is assisted by the indirect call table and function
pointer table following steps below: (1) The function
table is shuffled and the return address table is updated
correspondingly to reflect the new indexes of caller func-
tions. (2) All function pointer initialization points are
updated through the function pointer table to reflect the
new indexes. (3) All entries of the return address table
are shuffled and all movw lr, #ret_index instruc-
tions are rewritten to reflect the new return indexes. The
offsets of movw instructions can be determined through
the direct call table and indirect call table. Note that
the flash memory usually has limited erase cycles. Our
design would shorten the service life of the MCU chip
under persistent attacks. This problem can be alleviated by
switching to a fail-safe operating mode instead of constant
rebooting. The fault handlers can be readily instrumented
to trigger the fail-safe mode. We leave the implementation
of fail-safe mode firmware as our future work.

7. Implementation

We have implemented a HARM prototype for the
NXP LPC55S69-EVK development board [55], which is
equipped with a dual-core ARM Cortex-M33 MCU with
TrustZone extension running at up to 150 MHz. The
board is equipped with a 640 KB on-chip flash memory,

SRAM
Firmware Data

(rw-)
SRAM

SandBox
(r-x)

SRAM
Secure Runtime Data

(rw-)

FLASH
Refined Firmware

(r--)
FLASH

Secure Runtime Code
(r-x)

Shuffle

Firmware
Source Code

ELF
Image

 Binary
Analysis

Binary
Rewriting

Meta-data

Secure Runtime
Source Code

Refined
Firmware

Secure
Runtime
Binary

Non-Secure
Memory

Secure
Memory

Peripherals
(rw-)

Third
Party Lib

...

...
Linker Script

Figure 3. Workflow of HARM Prototype

a 320 KB SRAM, and numerous peripherals including a
microSD slot, a Full-Speed USB interface, etc. We note
that our implementation does not depend on any board-
specific features and therefore can be easily ported to other
ARM MCUs with TrustZone extension.

The off-device binary analysis and rewriting module is
based on several open-source projects and we contributed
~2,000 new lines of Python code. The secure runtime
comprises of ~1,200 lines of C code and ~558 lines of
assembly code. In Figure 3, we show the workflow of our
prototype.

7.1. Binary Analysis and Rewriting

Binary Analysis: We used pyelftools [56] to parse
the ELF-format firmware and Capstone [57] to disas-
semble instructions. We extracted the following informa-
tion: (1) we obtain the base/size information of functions
to construct the function table; (2) we find the direct call
instructions to construct the direct call table; (3) we find
function call instructions to construct the return address
table; (4) we find the initial vector table from address zero
and recognize all the exception handlers to instrument the
handler entries; (5) from the relocation table, we identify
the initialization points of function pointers and global
read-only data.

Binary Rewriting: To better manage the complex ref-
erence relationship among different instruction/data ob-
jects, we followed the idea of internal representation (IR)
proposed in RevARM [58]. Specifically, we represent an
instruction/data object as a class that contains relevant
properties obtained during binary analysis. For example,
an object of the call instruction includes the information
about whether it is a direct call or an indirect call, and also
a reference to the calling target. In this way, we can focus
on manipulating the IR object without worrying about the
assembly syntax.

After the instrumentation information has been incor-
porated in the IR objects, HARM recalculates the address
for each IR. This also updates the memory layout of the
firmware. The alignment is also performed by inserting
or removing the NOP instructions. The final step is to
translate the IR into the machine code. For this purpose,
we implemented an IR method that outputs the assembly
code for an object, and then we use Keystone [59]
to assemble them. The result is a Binary Large OBject
(BLOB) without any ELF header information. It can be
directly downloaded into the target device. Along with

528

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

this process, a C header file containing the metadata used
by the secure runtime is generated. It is compiled into the
secure runtime (shown at the bottom of Figure 3).

7.2. Secure Runtime

The secure runtime runs in the TrustZone secure
world. It sets up the environment of the sandbox and
periodically enforces re-randomization.

Bootstrapping: When the device powers up, it runs
in the secure world and performs a function in-
dex re-randomization using In-Application Programming
(IAP) [60]. Then, it fetches the reset handler from the
vector table at address zero. It then starts booting from
the reset handler, which initializes the hardware, partitions
the memory, and configures the access permissions to
restrict the sandbox. Subsequently, it shuffles the function
table, return address table and rewrites the corresponding
function pointers and instructions by invoking the flash
driver resides in the boot ROM. Before giving control
to the firmware, it performs the first randomization. To
get a random seed, HARM polls a random number from
the RNG on the board. Based on this seed, it copies each
function in the flash into a random location in the sandbox.
Correspondingly, the secure runtime updates the vector
table based on the new addresses of exception handlers
and moves it to a random location. Finally, the normal-
world VTOR is updated according to the new address of
vector table. At this stage, a new function dispatch table
is also created.

Before giving control to the firmware, the secure
runtime sets up a timer using SysTick. This is used
as the trigger for periodical re-randomization requests.
We must ensure that it has a higher priority than any
exceptions in the normal world. This is done by de-
prioritizing all non-secure exceptions by setting bit 14
(i.e., PRIS) of the Application Interrupt and Reset Control
Register (AIRCR). Finally, the secure runtime switches to
the normal world where the reset handler of the firmware
is executed. During normal operation, the randomizer is
triggered periodically by the secure timer. In each re-
randomization cycle, the randomizer does the same thing
as the first randomization.

Memory Partitioning & Security Enforcement: As part
of bootstrapping, we used the SAU registers to partition
the memory space into secure one and non-secure one. Be-
sides the secure runtime and metadata, the secure memory
space also includes the boot ROM and AHB Secure
Controller [53], which is used to configure peripheral
accesses. Note that SAU can only be accessed in the
secure world and therefore cannot be manipulated by the
firmware. Moreover, we used MPU to enforce DEP for the
data regions of the firmware. To prevent attackers from
disabling DEP by writing to the MPU registers, HARM
disables the write access to the non-secure MPU registers
from the normal world via the AHB Secure Controller. We
also disabled execution permission for the flash memory,
which cannot be randomized, to prevent firmware from
reusing the code in there. The peripherals are exclusively
used by the firmware. Therefore they are readable and
writable in the normal world. The address information of
each region is defined as symbols in a linker script. The
secure runtime uses it for configuration during booting.

We depict the access permissions, property, and the usage
for each memory region in the right of Figure 3.

Table Lookup: The secure runtime also needs to respond
to secure calls frequently. To encode/decode the code
pointer, they need to look up the function dispatch table. In
our prototype, we implemented a Red-Black Tree to store
the key-value pair <address, index> for efficient
table lookup. Therefore, the lookup overhead increases
only logarithmically with the number of functions.

8. Evaluation

We evaluated the HARM prototype against real-world
applications as well as two popular benchmarks. We are
interested in the following questions. (1) What is the min-
imal re-randomization frequency to prevent a remote at-
tacker from conducting JIT-ROP like attacks? (2) What is
the highest re-randomization frequency HARM can support
before the performance overhead becomes unacceptable?
(3) How much code is added by instrumentation? (4) Will
HARM consume more power than the original firmware?
What if the firmware supports power saving mode?

We selected five real-world firmware images, covering
various IoT application scenarios. PinLock was used in
many other MCU research projects [22], [29], [46]. It
simulates a smart lock that accepts user passcode via a
serial port. The SHA-256 of the passcode is embedded
in the firmware and is used to check the validity of the
unlocking request. U-Disk and FatFs-uSD are provided
with the SDK of the development board [61]. U-Disk
simulates a USB disk peripheral, which can be enumerated
by a PC. FatFs-uSD initializes and accesses a FAT file
system on a microSD card inserted on the board. Both
of them are provided with two versions – bare-metal and
FreeRTOS. We developed MQTT-Echo by ourselves. It
implements an MQTT client that subscribes the “echo”
topic on the cloud server and echoes any received message
back. MQTT-Echo is based on the MQTT-C library [62],
a popular MQTT implementation for embedded systems.
We used Iperf [63] as a benchmark to measure the network
throughput. It was ported by NXP to its chips. Both
MQTT-Echo and Iperf use FreeRTOS as the underlying
OS. Two benchmarks we used were BEEBS [64] and
CoreMark [65]. The former includes a wide range of
programs to test the performance of deeply embedded sys-
tems and the latter is an industry-standard benchmark that
measures the overall computing performance for MCUs.

All the firmware were compiled by the ARM GCC
toolchain with the -Os optimization level, the most com-
mon compiler option in MCU that minimizes code size.

8.1. Re-randomization Frequency

We assume a powerful attacker who can read out the
whole code contents and launch a JIT-ROP fashion attack.
To gain a perception of how fast this can be against MCUs,
we experimented with a real board under idealistic set-
tings. As mentioned before, we cannot craft the ROP chain
locally on the MCU as was done in the original JIT-ROP
paper [30], since MCUs lack the scripting environment
on Windows/Linux. However, we made efforts to set up
the experiment environment in favor of the attacker. For

529

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

example, the memory disclosure bug allows for leaking
an arbitrary length of data at a time and the attacker was
assumed to know the exact location of the sandbox. In
our LAN, RTT was less than 2 ms and TCP bandwidth
was ~6 Mbit/s (speed limited by the NIC of MCU). The
attacking PC has an Intel Core i7-8750H CPU with 16
GB RAM.

We intentionally brought in a memory disclosure bug
and a buffer overflow bug to the firmware. We remotely
triggered the memory disclosure bug using the PC in
the LAN to steal all the code in the sandbox (64 KB).
Attackers may only need to steal part of the code on
demand, however, it would involved multiple rounds of
communications and take longer. Then, on the PC, we
used ROPGadget [66] to find and compile a ROP chain
that disables DEP protection and jumps to an infinite loop
on the stack. After sending the exploitation payload back,
the device hung as expected.

The attack took approximately 600 ms to complete,
starting from triggering the memory disclosure bug to
crashing the stack. The 600 ms roughly consisted of
150 ms for computation (disassembling and finding ROP
chains) and 450 ms for network transmission. We note the
majority of the time was spent on network, so it is unlikely
to significantly reduce the measured time even with a
more powerful attack PC. Our experiment simulated an
idealistic environment for attackers and thus the result was
conservative. This gives us a guideline of how to set up
re-randomization frequencies in the following evaluation
experiments: as long as we do re-randomization more
often than every 600 ms, HARM defeats real-world JIT-
ROP like attacks. In another experiment, we ran the attack
script on a remote machine located in New York (over
1,300 km away from our experiment site), the attack took
more than 1,200 ms (RTT was 24 ms).

8.2. Code Size & Memory Overhead

We measured the number of additional instructions in-
serted during binary rewriting, and provided a break-down
in Table 1. Compared to the uninstrumented baseline, the
overall code size increases by less than 16.0% in all the
samples. Direct call instrumentation incurs the most over-
head, taking approximately 78% of the whole overhead.
This is expected considering the frequent uses of function
calls. There is an identical copy of secure API veneers
for each firmware. However, we observed two additional
bytes in CoreMark. This was caused by a padding of a
NOP instruction to make the literal pool word-aligned. Our
approach wastes the normal-world flash memory because
the code there is moved to SRAM for execution. However,
we did not observe a shortage of memory in our evaluation
with real-world samples. Moreover, many MCUs come
with an external DRAM interface, which can alleviate
the problem. Our instrumentation does not introduce any
overhead on run-time memory such as stack and heap.

The secure runtime resides in the secure flash. It con-
sists of a fixed code size (19 KB) plus variable sized tables
(i.e., metadata) compiled from the header files extracted
from the firmware. Table 2 shows the number of functions
and the size of metadata for each sample. As can be seen,
the latter grows with the former.

SRAM

Randomize Once

200 ms

100 ms

50 ms

Figure 4. Normalized Execution Time under Different Re-randomization
Frequencies (the lower, the better).

8.3. Performance

Depending on the nature of the application, we de-
signed firmware specific experiments to measure the run-
time performance overhead. For PinLock, we followed
the same method as in μRAI [22]. Specifically, we timed
the whole process of receiving 1,000 PINs that alternate
between incorrect PINs, a correct PIN, and a locking
command that requests the PIN again. For U-Disk (both
bare-metal and FreeRTOS), we connected the board to the
host through the USB interface. After the PC recognizes
the board as U-Disk, it formats the U-Disk with the FAT32
file system and copies a file of 10 MB to the board.
We measured the time spent on copying. For FatFs-uSD
(both bare-metal and FreeRTOS), the firmware creates
a file system on the SD card. Then it creates a new
file and writes 100 bytes of random data to that file.
Finally, it reads back the contents and checks whether
they are the same. We measured the time from creating
the file system to the completion of content verification.
For MQTT-echo, we measured the time from receiving
the subscribed message to echoing it back. For Iperf, we
recorded the throughput. For CoreMark, it directly gave
us a synthesized score. Finally, we recorded the execution
time for BEEBS.

We compared the results among the baseline, SRAM,
randomize once, and different frequencies. The baseline
was measured with the original firmware on the flash.
SRAM was measured when the original firmware is copied
into the SRAM for execution. Randomize once was meas-
ured when the instrumented firmware is copied to the
sandbox, but without any further re-randomization. The
randomization periods we chose were 200 ms, 100 ms,
and 50 ms. All of them are far less than 600 ms that we
measured in the aforementioned real exploitation. Note
except for baseline, the code is held in SRAM for all
the other settings. We ran each experiment 20 times and
calculated the average. Since PinLock, U-Disk, FatFs-
uSD, MQTT-echo and BEEBS were measured by the
execution time, we demonstrate the normalized results in
Figure 4 and Table 4. For Iperf and CoreMark, we show
the raw data in Table 3.

Generally speaking, for all the firmware, the per-
formance degrades when the re-randomization frequency
increases. When the randomization frequency is below 5

530

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

Table 1. BREAK-DOWN OF CODE SIZE INCREMENT

Baseline (bytes) Direct Call (bytes) Indirect Call (bytes) Function Return (bytes) Secure API Veneers (bytes) Overall Overhead (%)

PinLock 12,584 996 12 167 32 10.92
U-Disk Bare-metal 24,470 2,096 50 340 32 11.68
U-Disk FreeRTOS 33,618 3,412 100 477 32 13.38

FatFs-uSD Bare-metal 27,608 2,624 36 340 32 12.21
FatFs-uSD FreeRTOS 33,928 3,856 38 293 32 13.30

Iperf 64,920 8,100 106 909 32 15.49
MQTT-Echo 68,684 8,372 80 922 32 15.04

CoreMark 21,864 1,676 50 219 34 10.05

Table 2. FUNCTION NUMBER AND METADATA SIZE

Total Functions Function Tab. (bytes) Ret. Addr. Tab. (bytes) Direct Call Tab. (bytes) Indirect Call Tab. (bytes) Func. Ptr. Tab. (bytes)

PinLock 198 2,772 1,016 2,418 64 4
U-Disk Bare-metal 311 4,354 2,192 5,100 156 100
U-Disk FreeRTOS 400 5,600 3,612 7,806 264 152

FatFs-uSD Bare-metal 297 4,158 2,693 5,664 120 20
FatFs-uSD FreeRTOS 377 5,278 3,948 8,058 132 64

Iperf 713 9,982 8,312 16,950 300 152
MQTT-Echo 752 10,528 9,252 18,636 264 160

CoreMark 201 2,814 1,776 3,702 136 4

Table 3. COREMARK AND IPERF PERFORMANCE UNDER DIFFERENT

RE-RANDOMIZATION FREQUENCIES (THE HIGHER, THE BETTER).

Baseline SRAM Rand. Once 200 ms 100 ms 50 ms

CoreMark (Points) 262.30 428.00 374.70 373.46 372.41 363.66
Iperf (Mb/s) 5.48 5.61 5.60 5.30 5.02 4.54

Table 4. BEEBS RESULTS (THE HIGHER, THE WORSE)

SRAM
(ms)

Rand. Once
(×)

200 ms
(×)

100 ms
(×)

50 ms
(×)

bubblesort 1,832 1.00 1.00 1.01 1.02
dijkstra 20,777 1.16 1.17 1.17 1.19

edn 1,305 1.01 1.02 1.02 1.04
fasta 2,915 1.01 1.01 1.02 1.03

fir 7,611 1.36 1.37 1.37 1.39
huffbench 8,960 1.00 1.01 1.01 1.02

levenshtein 1,324 1.07 1.08 1.08 1.09
matmulti-int 3,516 1.21 1.22 1.23 1.23

nettle-aes 2,033 2.03 2.06 2.07 2.09
picojpeg 22,851 2.04 2.05 2.05 2.07
qrduino 21,888 1.19 1.20 1.21 1.23

sglib-dllist 962 1.21 1.21 1.22 1.23
sglib-listinsertsort 1,270 1.22 1.23 1.23 1.24

sglib-listsort 2,419 1.08 1.08 1.09 1.10
sglib-rbtree 3,924 1.31 1.32 1.32 1.33

slre 1,056 1.80 1.88 1.88 1.90
sqrt 45,332 1.24 1.25 1.25 1.26

st 9,424 1.27 1.27 1.28 1.29
whetstone 75,860 1.17 1.17 1.18 1.19

Min - 1.00 1.00 1.01 1.02
Max - 2.04 2.06 2.07 2.09

Geomean - 1.25 1.26 1.27 1.28

Hz (or the period is longer than 200 ms), the maximum
overhead is merely 5.8%. Note that 200 ms is much
less than the measured 600-ms cut-off point in a real
JIT-ROP like attack. In U-Disk and CoreMark, we even
observed improved performance. This is because the code
in baseline runs in the flash memory whereas others run in
the SRAM, which is faster in fetching instructions. This
improvement actually outweighs the overhead introduced
by instrumentation and randomization operations. We note
that U-Disk1 and CoreMark are computation/memory in-
tensive. Therefore, instruction fetching significantly in-
fluences the execution speed. For other I/O intensive

1. U-Disk seems to be I/O intensive. However, we found that it copies
large amount of data received from the USB buffer to the SD card buffer.

Pin
Lo
ck

U-
Dis

k

Ba
rem

eta
l
U-
Dis

k

Fre
eR
TO

S
Fa
tFs

-uS
D

Ba
rem

eta
l
Fa
tFs

-uS
D

Fre
eR
TO

S Ipe
rf

MQ
TT

-Ec
ho

Co
reM

ark
0

2

4

6

8

10

12

14

16

18

T
im
e
C
on
su
m
p
ti
on

(m
s)

Func. Sort & Misc.

Code Copy & FDT Update

Call Adjustment

Figure 5. Overhead Breakdown in Each Randomization

applications, the performance of SRAM is similar to the
baseline.

For BEEBS, we picked 19 programs that implement a
wide range of algorithms involving integer/floating-point
computations. For each program, we measured the exe-
cution time of running 4,096 iterations. The baseline was
measured on SRAM. As shown in Table 4, the geometric
means of the overhead were 25%, 26%, 27% and 28%,
for each randomization frequency. However, we observed
much higher overhead on nettle-aes and picojpeg.
By investigating the source code, we found these programs
continuously call simple functions in long loops, which
incurs significant overhead since we instrument on every
functions return.

Overhead Breakdown. We now breakdown the real over-
head imposed by HARM. Comparing SRAM with random-
ize once, the difference directly reflects the actual over-
head due to instrumentation and secure services because
they both run on SRAM. The overhead of each firmware
is 2.31%, 1.41%, 55.2%, 1.30%, 1.04% and 0% respect-
ively. We did not observe huge gaps except for U-Disk-
FreeRTOS. We attribute this to the frequent function return
operations. In each function return, a secure service is
needed to decode the code pointer. Comparing randomize
once with 50/100/200 ms, the difference directly reflects
the overhead due to randomization. The overhead under

531

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

200 ms of each firmware is 0%, 1.92%, 1.77%, -1.12%,
0% and 0% respectively. As the frequency increases, we
observed slow performance degradation. When the fre-
quency reaches 20 Hz (the period is 50 ms), the maximum
overhead we observed is 21% (U-Disk FreeRTOS).

We further zoom in on the overhead of randomization
itself in Figure 5. The overhead mainly comes from 1)
copying code from flash to sandbox and updating the func-
tion dispatch table; and 2) adjusting direct call offsets. The
former overhead depends on the code size and the latter
depends on the number of direct calls in the firmware.

Finally, we measured the time spent on world switch-
ing, which happens frequently when the firmware invokes
secure services. As mentioned before, TrustZone-M highly
optimizes the world switching [67]. Switching to the
secure world can be achieved with a single SG instruction,
which takes 3 CPU cycles based on chip manual (cf. §2.2
of [44]). To confirm this, we wrote a micro-benchmark
that measures the time spent on a normal function call
and a secure call. Both functions were empty and written
in assembly to avoid any unexpected overhead. We used
the SysTick counter to measure the CPU cycles. On
average, the normal function takes 16 cycles while the
secure function takes 19 cycles. This result agrees with
the chip manual, indicating negligible overhead.

8.4. Energy Consumption

IoT applications are sensitive to energy consumption.
In this experiment, we used a digital multimeter to profile
energy consumption. We followed the instructions on the
board manual [68] to collect instant current via pin P13 on
the board. We recorded a reading every 500 ms and report
the average in Table 5. The overall energy consumption
does not vary a lot. Comparing baseline and SRAM,
we observed slightly increased energy consumption. This
indicates that SRAM consumes more power than flash
when in the high-speed mode [69]. As re-randomization
frequency increases, more time was spent by the secure
runtime to do randomization. Since the secure runtime
runs in the flash and flash uses less power, we observed
slightly decreased energy consumption.

We further used the MicroTick timer demo provided
by the SDK to evaluate the power saving mode support.
The MCU entered into deep sleep mode (idle) and would
be woken up (active) by a micro-tick interrupt every few
seconds. When the power-saving mode was enabled, we
observed that the power consumption was the same with
the baseline when the firmware is either active (2.43 mA)
or idle (1.85 mA). In contrast, when the power-saving
mode was disabled, we observed high power consumption
(2.43 mA) even if the firmware was supposed to sleep
(i.e., 1.85 mA is expected), since the secure SysTick
exception frequently woke up the MCU in a micro-tick
cycle.

9. Discussion and Limitations
Due to the lack of code diversity mechanisms, CRAs

including ROP and JIT-ROP like attacks impose an acute
threat to the security of MCU devices. HARM provides
an effective mitigation mechanism for CRAs by doing
randomization periodically, at the cost of sacrificing some

SRAM space to store code. The unique characteristics of
MCU make CRA particularly easier to be conducted. In
MCU devices, the memory is mapped to fixed locations
and has smaller sizes. This means attackers can simply
dump the code from fixed locations and then do gadget
compilation. The good news for defenders is that in MCU
devices, the attacker cannot search and compile the gad-
gets locally, because MCU firmware does not have the
needed scripting environment. Since the leaked memory
has to be sent out over the network, it takes much longer to
conduct a full JIT-ROP like attack (~600 ms). Within such
a long time window, HARM can complete a randomization
cycle without significantly influencing the run-time per-
formance. Leaking the functions indexes allows attackers
to jump to another valid function, regardless of the code
randomization. To deal with persistent attackers who want
to brute-force such mapping information, HARM performs
function index re-randomization on each device reboot.

HARM provides comprehensive randomization protec-
tion to all the executable code. First, HARM uses MPU to
make sure no static code can be executed, including that
in the flash memory. Second, the secure runtime module
performs randomization continuously for all the functions
in the sandbox, including the trampoline functions and
interrupt handlers. Third, access to MPU is locked by
TrustZone so DEP cannot be disabled.

Limitations: First, HARM currently focuses on control-
flow protection and therefore cannot defend against data-
only attacks such as DOP [70] and data-flow stitch-
ing [71]. Second, the additional instrumentation and
periodical re-randomization bring about non-determinism
which may violate the hard real-time constraints in some
scenarios such as industrial control. Therefore, HARM is
more suitable for applications without strict timing con-
straints, such as PinLock which we have evaluated. Third,
HARM holds the code in SRAM to facilitate randomization,
which implicitly doubles the RAM consumption for the
code segment. However, there is no overhead on data
segments. More memory overhead is imposed by having
a secure runtime in the secure world. Fourth, our current
strategy reboots the device whenever a crash is detec-
ted. Under persistent DoS attacks, the flash would wear
quicker due to excessive re-programming. This problem
can be alleviated by switching to a fail-safe operating
mode instead of constant rebooting as mentioned before.
Lastly, the soundness of our binary rewriting tool is chal-
lenged in the presence of many compilation options. We
discuss several corner cases in Appendix C

10. Related Work

10.1. Code Re-randomization

Code re-randomization has been studied for a while.
TASR [38] performs on-demand code re-randomization
based on the monitoring of I/O events. The observation
is that I/O operations are highly likely to be related
to a JIT-ROP attack – output operations might be used
to leak code, whereas input operations might be used
to inject payloads. MARDU [37] is similar, but relies
on abnormal program behaviors, e.g., process crash, to
trigger re-randomization. RUNTIMEASLR [36] invokes

532

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

Table 5. AVERAGE ENERGY CONSUMPTION UNDER DIFFERENT RE-RANDOMIZATION FREQUENCIES (THE LOWER, THE BETTER).

Baseline (mA) SRAM (mA) Rand. Once (mA) 200 ms (mA) 100 ms (mA) 50 ms (mA)

PinLock 8.70 8.70 8.70 8.70 8.67 8.69
U-Disk Bare-metal 15.05 15.34 15.73 17.70 15.68 15.65
U-Disk FreeRTOS 15.14 15.23 15.31 15.28 15.27 15.22

FatFs-uSD Bare-metal 14.11 15.14 15.11 15.10 15.08 15.05
FatFs-uSD FreeRTOS 13.76 13.80 14.41 14.37 14.36 14.34

Iperf 9.15 9.87 9.67 9.62 9.55 9.48
MQTT-Echo 9.13 9.11 9.31 9.20 9.16 9.08

CoreMark 8.01 8.67 8.79 8.77 8.77 8.73

a re-randomization when a child process is forked. Re-
mix [41] performs live randomization at basic block
level, minimizing the complexity of migrating stale code
pointers. RERANZ [39] leverages a dedicated “shuffling
process” to continuously replace old code with a fine-
grained randomized code variant. Shuffler [40] imple-
ments asynchronous and continuous function-level code
re-randomization on the order of milliseconds. These
solutions work at different granularities (basic block vs.
function vs. module) with different triggers (I/O events
vs. program status vs. timer). However, they all share one
similarity – they are designed for commodity platforms
and depend on the rich runtime environment on these
platforms, which is unavailable in low-end MCUs devices.
HARM is the first re-randomization work for MCU. It
does not rely on any runtime environment rather than the
TrustZone security extension.

10.2. MCU Security

CFI: Apart from randomization, Control-Flow Integrity
(CFI) [72] is another popular way to prevent control flow
hijacking attacks. μRAI [22] is a compiler-based solution
that enforces return address integrity by removing the need
to spill return addresses to the stack. This is achieved
by using direct jump instructions and a reserved register
to determine the correct return location. Silhouette [45]
also targets backward CFI, but introduces an incorrupt-
ible shadow stack and store hardening. CFI CaRE [73]
leverages TrustZone to implement shadow stack mechan-
ism. TZmCFI [74] extends it to further cover exception
handlers. BARRA [75] is a variant of shadow stack which
works with randomization. It protects the return addresses
by replacing them with IDs that are re-randomized when
the mapping table is leaked. BARRA shares the same
idea of using an ID to encode return addresses, but it
only covers backward-edge CFI. Forward-edge CFI has
not been discussed a lot, partially due to its high perform-
ance overhead and false negatives [76]. C-FLAT [77] and
OAT [51] provide remote attestation of control-flow for
embedded systems. However, they are currently restricted
to simple programs and require a remote verifier.

XOM: eXecutable-Only-Memory (XOM) is commonly
used in conjunction with randomization solutions to de-
feat JIT-ROP attacks. It prevents code disclosure and
therefore can defeat gadget collections. Many hardware
XOM IPs have been used in different real devices [78].
uXOM [33] implements a software-based XOM for ARM
MCUs leveraging special architectural features in Cortex-
M. PicoXOM [34] leverages the debug unit of MCU to im-
plement a lightweight XOM. XOM cannot prevent indirect

JIT-ROP attack [31], [35] since gadgets can be inferred
from code pointers in data sections. HARM covers both
direct and indirect JIT-ROP via continuous randomization
and code pointer encoding.

Others: MPU has been used a lot in literature to address
security problems. Minion [1] identifies the reachable
memory regions for each thread based on off-line static
analysis and then uses MPU to enforce run-time memory
access control. ACES [79] presents an LLVM-based com-
piler, which can infer and enforce memory compartment-
alization automatically on bare-metal systems. Both Min-
ion and ACES configure the MPU dynamically at run-time
to switch to the needed memory access control setting
to meet various demands and scenarios. HARM leverages
MPU to enforce DEP, a basic assumption in randomization
works. EPOXY [29] presents privilege overlaying to auto-
matically identify operations requiring privilege and only
allow them to run in privileged mode. The authors show-
cased its usage in many security mechanisms, including
code integrity, CFI, and fine-grained randomization. The
proposed randomization is performed per device-booting,
making it vulnerable to JIT-ROP attacks. RevARM [58] is
a fine-grained binary rewriting technique for ARM. It is
for general-purpose binary instrumentation and can insert
any logic at arbitrary location. Our implementation of
internal representation (IR) is inspired by RevARM.

11. Conclusions

We propose HARM, the first continuous code re-
randomization solution for MCUs. Our work relies on
the ARM TrustZone extension to build a special runtime
system for re-randomization. It periodically invokes non-
bypassable randomization requests to the firmware exe-
cution. The firmware image is refined by the proposed
binary analysis and rewriting tool to minimize the work-
load required to track and update code/data references.
HARM is OS-agnostic. Therefore, it can be used with both
bare-metal firmware and RTOS-based firmware. HARM
supports multi-party development environment since no
source code is needed. We implemented a HARM prototype
for a real development board. With extensive evaluation,
we conclude HARM provides mitigations to CRAs with
moderate overhead.

Acknowledgment

We thank Dr. Kang Li from Baidu Security and Dr.
Kyu Hyung Lee from UGA for their insightful comments.
This work was supported in part by a grant from the
University of Georgia Research Foundation, Inc.

533

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

References

[1] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu,
“Securing real-time microcontroller systems through customized
memory view switching,” in NDSS, 2018.

[2] O. Karliner, “FreeRTOS TCP/IP Stack Vulnerabilities – The
Details,” https://blog.zimperium.com/freertos-tcpip-stack-
vulnerabilities-details/, December 2018 (last accessed on:
8th March 2022).

[3] B. Seri, G. Vishnepolsky, and D. Zusman, “Critical vulner-
abilities to remotely compromise VxWorks, the most popu-
lar RTOS,” https://go.armis.com/hubfs/White-papers/Urgent11%
20Technical%20White%20Paper.pdf, ARMIS, INC., Tech. Rep.,
2019 (last accessed on: 8th March 2022).

[4] G. Beniamini, “Over The Air: Exploiting Broadcom’s Wi-
Fi Stack,” https://googleprojectzero.blogspot.com/2017/04/over-
air-exploiting-broadcoms-wi-fi_4.html, 2017 (last accessed on:
8th March 2022).

[5] J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein:
Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation
Targets,” in 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, Aug. 2020, pp. 19–36.

[6] M. E. Garbelini, C. Wang, S. Chattopadhyay, S. Sumei, and E. Kur-
niawan, “SweynTooth: Unleashing Mayhem over Bluetooth Low
Energy,” in 2020 USENIX Annual Technical Conference (USENIX
ATC 20). USENIX Association, Jul. 2020, pp. 911–925.

[7] Microsoft, “Data Execution Prevention (DEP),” http:
//support.microsoft.com/kb/875352/EN-US/, 2006 (last accessed
on: 8th March 2022).

[8] M. Polychronakis and A. D. Keromytis, “ROP payload detection
using speculative code execution,” in 2011 6th International Con-
ference on Malicious and Unwanted Software. IEEE, 2011, pp.
58–65.

[9] M. Prandini and M. Ramilli, “Return-oriented programming,” IEEE
Security & Privacy, vol. 10, no. 6, pp. 84–87, 2012.

[10] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng, “RO-
Pecker: A generic and practical approach for defending against
ROP attack,” 2014.

[11] R. Qiao, M. Zhang, and R. Sekar, “A principled approach for rop
defense,” in Proceedings of the 31st Annual Computer Security
Applications Conference, 2015, pp. 101–110.

[12] N. R. Weidler, D. Brown, S. A. Mitchel, J. Anderson, J. R. Willi-
ams, A. Costley, C. Kunz, C. Wilkinson, R. Wehbe, and R. Gerdes,
“Return-Oriented Programming on a Cortex-M Processor,” in 2017
IEEE Trustcom/BigDataSE/ICESS, 2017, pp. 823–832.

[13] M. Elsabagh, D. Barbara, D. Fleck, and A. Stavrou, “Detecting
ROP with Statistical Learning of Program Characteristics,” in
Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy, ser. CODASPY ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
219–226.

[14] L. Luo, Y. Zhang, C. Zou, X. Shao, Z. Ling, and X. Fu, “On
Runtime Software Security of TrustZone-M Based IoT Devices,”
in GLOBECOM 2020 - 2020 IEEE Global Communications Con-
ference, 2020, pp. 1–7.

[15] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity principles, implementations, and applications,” ACM
Trans. Inf. Syst. Secur., vol. 13, no. 1, Nov. 2009.

[16] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A Fast Address Sanity Checker,” in 2012 USENIX
Annual Technical Conference (USENIX ATC 12). Boston, MA:
USENIX Association, Jun. 2012, pp. 309–318.

[17] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Soft-
Bound: Highly compatible and complete spatial memory safety
for C,” in Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2009, pp.
245–258.

[18] Alan Mujumdar, “Armv8.1-M Pointer Authentication
and Branch Target Identification Extension,” https:
//community.arm.com/developer/ip-products/processors/b/
processors-ip-blog/posts/armv8-1-m-pointer-authentication-
and-branch-target-identification-extension, 2021 (last accessed
on: 8th March 2022).

[19] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-Flow Bending: On the Effectiveness of Control-Flow
Integrity,” in 24th USENIX Security Symposium (USENIX Security
15). Washington, D.C.: USENIX Association, Aug. 2015, pp.
161–176.

[20] Brandon Azad, “Examining Pointer Authentication on the iPhone
XS,” https://googleprojectzero.blogspot.com/2019/02/examining-
pointer-authentication-on.html, 2019 (last accessed on: 8th March
2022).

[21] A. Abbasi, J. Wetzels, T. Holz, and S. Etalle, “Challenges in design-
ing exploit mitigations for deeply embedded systems,” in 2019
IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 31–46.

[22] N. S. Almakhdhub, A. A. Clements, S. Bagchi, and M. Payer,
“μRAI: Securing Embedded Systems with Return Address Integ-
rity,” in Network and Distributed Systems Security (NDSS) Sym-
posium, 2020.

[23] P. Team, “PaX address space layout randomization (ASLR),” 2003.

[24] S. Priyadarshan, H. Nguyen, and R. Sekar, “Practical fine-grained
binary code randomization,” in Annual Computer Security Applic-
ations Conference, 2020, pp. 401–414.

[25] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-Assisted Code Randomization,” in 2018 IEEE Sym-
posium on Security and Privacy (SP), 2018, pp. 461–477.

[26] A. Gupta, J. Habibi, M. S. Kirkpatrick, and E. Bertino, “Marlin:
Mitigating Code Reuse Attacks Using Code Randomization,” IEEE
Transactions on Dependable and Secure Computing, vol. 12, no. 3,
pp. 326–337, 2015.

[27] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
Gadgets: Hindering Return-Oriented Programming Using In-place
Code Randomization,” in 2012 IEEE Symposium on Security and
Privacy, 2012, pp. 601–615.

[28] H. Koo and M. Polychronakis, “Juggling the Gadgets: Binary-
Level Code Randomization Using Instruction Displacement,” in
Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, ser. ASIA CCS ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 23–34.

[29] A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava,
J. Koo, S. Bagchi, and M. Payer, “Protecting Bare-Metal Embedded
Systems with Privilege Overlays,” in 2017 IEEE Symposium on
Security and Privacy (SP). IEEE, 2017, pp. 289–303.

[30] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A. Sadeghi, “Just-In-Time Code Reuse: On the Effectiveness
of Fine-Grained Address Space Layout Randomization,” in 2013
IEEE Symposium on Security and Privacy, 2013, pp. 574–588.

[31] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Mon-
rose, “Isomeron: Code Randomization Resilient to (Just-In-Time)
Return-Oriented Programming,” in NDSS, 2015.

[32] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking Blind,” in Proceedings of the 2014 IEEE Symposium on
Security and Privacy, ser. SP ’14. USA: IEEE Computer Society,
2014, p. 227–242.

[33] D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, “uXOM:
Efficient eXecute-Only Memory on ARM Cortex-M,” in 28th
USENIX Security Symposium (USENIX Security 19). Santa Clara,
CA: USENIX Association, Aug. 2019, pp. 231–247.

[34] Z. Shen, K. Dharsee, and J. Criswell, “Fast Execute-Only Memory
for Embedded Systems,” in 2020 IEEE Secure Development
(SecDev), 2020, pp. 7–14.

[35] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
C. Liebchen, M. Qunaibit, and A.-R. Sadeghi, “Losing control:
On the effectiveness of control-flow integrity under stack attacks,”
in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015, pp. 952–963.

534

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

[36] K. Lu, W. Lee, S. Nürnberger, and M. Backes, “How to make aslr
win the clone wars: Runtime re-randomization,” in NDSS, 2016.

[37] C. Jelesnianski, J. Yom, C. Min, and Y. Jang, “MARDU: Efficient
and Scalable Code Re-randomization,” in Proceedings of the 13th
ACM International Systems and Storage Conference, 2020, pp. 49–
60.

[38] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi,
“Timely rerandomization for mitigating memory disclosures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015, pp. 268–279.

[39] Z. Wang, C. Wu, J. Li, Y. Lai, X. Zhang, W.-C. Hsu, and
Y. Cheng, “Reranz: A light-weight virtual machine to mitigate
memory disclosure attacks,” in Proceedings of the 13th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, 2017, pp. 143–156.

[40] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake,
X. Yuan, P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and
W. Aiello, “Shuffler: Fast and Deployable Continuous Code Re-
Randomization,” in 12th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 16), Nov. 2016, pp. 367–
382.

[41] Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-demand
live randomization,” in Proceedings of the sixth ACM conference
on data and application security and privacy, 2016, pp. 50–61.

[42] Arm Holdings, “TrustZone technology for Armv8-M Archi-
tecture,” https://developer.arm.com/documentation/100690/latest/,
2018 (last accessed on: 8th March 2022).

[43] S. LABS, “Silicon Labs 32-bit ARM Microcontroller
Family,” https://www.silabs.com/products/mcu/32-bit/arm-32-
bit-microcontroller, 2021 (last accessed on: 8th March 2022).

[44] Arm Holdings, “ARM Cortex-M23 Processor Technical Refer-
ence Manual,” https://developer.arm.com/documentation/ddi0550/
c/, 2016 (last accessed on: 8th March 2022).

[45] J. Zhou, Y. Du, Z. Shen, L. Ma, J. Criswell, and R. J. Walls,
“Silhouette: Efficient Protected Shadow Stacks for Embedded Sys-
tems,” in 29th USENIX Security Symposium (USENIX Security 20).
USENIX Association, Aug. 2020, pp. 1219–1236.

[46] Z. Shen, K. Dharsee, and J. Criswell, “Fast execute-only memory
for embedded systems,” in 2020 IEEE Secure Development
(SecDev), 2020, pp. 7–14.

[47] A. Khan, H. Kim, B. Lee, D. Xu, A. Bianchi, and D. J. Tian,
“M2MON: Building an MMIO-based Security Reference Monitor
for Unmanned Vehicles,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021.

[48] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Un-
derstanding the Prevailing Security Vulnerabilities in TrustZone-
assisted TEE Systems,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 1416–1432.

[49] L. Guan, P. Liu, X. Xing, X. Ge, S. Zhang, M. Yu, and T. Jaeger,
“Trustshadow: Secure execution of unmodified applications with
arm trustzone,” in Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, 2017,
pp. 488–501.

[50] M. Lentz, R. Sen, P. Druschel, and B. Bhattacharjee, “SeCloak:
ARM Trustzone-Based Mobile Peripheral Control,” in Proceedings
of the 16th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 1–13.

[51] Z. Sun, B. Feng, L. Lu, and S. Jha, “OAT: Attesting Operation
Integrity of Embedded Devices,” in 2020 IEEE Symposium on
Security and Privacy (SP). Los Alamitos, CA, USA: IEEE
Computer Society, may 2020, pp. 1433–1449.

[52] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko, K. Schimpf,
B. Yee, and B. Chen, “Adapting Software Fault Isolation to Con-
temporary CPU Architectures,” in 19th USENIX Security Sym-
posium (USENIX Security 10). Washington, DC: USENIX Asso-
ciation, Aug. 2010.

[53] NXP, “7.20 AHB peripherals,” https://www.nxp.com/docs/en/data-
sheet/LPC55S6x.pdf, (last accessed on: 8th March 2022).

[54] STMicroelectronics, “12.3.4 SYSCFG CPU non-secure lock
register,” https://www.st.com/resource/en/reference_manual/
dm00346336-stm32l552xx-and-stm32l562xx-advanced-arm-
based-32-bit-mcus-stmicroelectronics.pdf, (last accessed on:
8th March 2022).

[55] NXP, “LPC55S69-EVK: LPCXpresso55s69 development board,”
https://www.nxp.com/design/development-boards/lpcxpresso-
boards/lpcxpresso55s69-development-board:LPC55S69-EVK,
2019 (last accessed on: 8th March 2022).

[56] E. Bendersky, “pyelftools,” https://github.com/eliben/pyelftools,
2021.

[57] N. A. Quynh, “Capstone engine,” https://github.com/aquynh/
capstone, 2021.

[58] T. Kim, C. H. Kim, H. Choi, Y. Kwon, B. Saltaformaggio,
X. Zhang, and D. Xu, “RevARM: A platform-agnostic ARM
binary rewriter for security applications,” in Proceedings of the
33rd Annual Computer Security Applications Conference, 2017,
pp. 412–424.

[59] N. A. Quynh, “Keystone engine,” https://github.com/keystone-
engine/keystone, 2021.

[60] NXP, “Chapter 9: LPC55S6x/LPC55S2x/LPC552x Flash API,”
https://www.mouser.com/pdfDocs/NXP_LPC55S6x_UM.pdf,
2019 (last accessed on: 8th March 2022).

[61] ——, “MCUXpresso SDK Builder,” https://mcuxpresso.nxp.com/
en/welcome, 2021 (last accessed on: 8th March 2022).

[62] L. Bindle, “MQTT-C,” https://github.com/LiamBindle/MQTT-C,
2021.

[63] “iPerf – The ultimate speed test tool for TCP, UDP and SCTP,”
https://iperf.fr/, 2016.

[64] J. Pallister, S. Hollis, and J. Bennett, “Beebs: Open benchmarks
for energy measurements on embedded platforms,” arXiv preprint
arXiv:1308.5174, 2013.

[65] EEMBC, “Coremark,” https://www.eembc.org/coremark/, 2021.

[66] J. Salwan, “ROPGadget,” https://github.com/JonathanSalwan/
ROPgadget, 2021.

[67] Arm Holdings, “Switching between Secure and Non-secure
states,” https://developer.arm.com/documentation/100690/0201/
Switching-between-Secure-and-Non-secure-states, 2019 (last
accessed on: 8th March 2022).

[68] NXP, “LPCXpresso55S69/55S28 Development Boards
User Manual,” https://www.mouser.com/pdfDocs/
NXP_LPCXpresso55S69_LPCXpresso55S28_UM.pdf, 2019
(last accessed on: 8th March 2022).

[69] H. M. D. Kabir and M. Chan, “SRAM precharge system for
reducing write power,” HKIE transactions, vol. 22, no. 1, pp. 1–8,
2015.

[70] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks,” in 2016 IEEE Symposium on Security and Privacy
(SP), 2016, pp. 969–986.

[71] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and
Z. Liang, “Automatic generation of Data-Oriented exploits,”
in 24th USENIX Security Symposium (USENIX Security 15).
Washington, D.C.: USENIX Association, Aug. 2015, pp.
177–192. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/hu

[72] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical Control Flow Integrity and Ran-
domization for Binary Executables,” in 2013 IEEE Symposium on
Security and Privacy, 2013, pp. 559–573.

[73] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “CFI CaRE:
Hardware-supported call and return enforcement for commercial
microcontrollers,” in International Symposium on Research in At-
tacks, Intrusions, and Defenses. Springer, 2017, pp. 259–284.

[74] T. Kawada, S. Honda, Y. Matsubara, and H. Takada, “TZmCFI:
RTOS-Aware Control-Flow Integrity Using TrustZone for Armv8-
M,” International Journal of Parallel Programming, pp. 1–21,
2020.

535

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

[75] C. Zou and J. Xue, “Burn after reading: A shadow stack with
microsecond-level runtime rerandomization for protecting return
addresses**thanks to all the reviewers for their valuable comments.
this research is supported by an australian research council grant
(dp180104069).” in 2020 IEEE/ACM 42nd International Confer-
ence on Software Engineering (ICSE), 2020, pp. 258–270.

[76] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos, “Control Jujutsu: On the
Weaknesses of Fine-Grained Control Flow Integrity,” in Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 901–913.

[77] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-FLAT: control-flow attestation
for embedded systems software,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
2016, pp. 743–754.

[78] M. Schink and J. Obermaier, “Taking a Look into Execute-Only
Memory,” in 13th USENIX Workshop on Offensive Technologies
(WOOT 19). Santa Clara, CA: USENIX Association, Aug. 2019.

[79] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer,
“ACES: Automatic Compartments for Embedded Systems,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore,
MD: USENIX Association, Aug. 2018, pp. 65–82.

[80] Arm Holdings, “Bare-metal Position Independent Executables,”
https://developer.arm.com/documentation/100748/0612/mapping-
code-and-data-to-the-target/bare-metal-position-independent-
executables, 2019 (last accessed on: 8th March 2022).

Appendix A.
Table Branch Instruction Example

1 10050: tbb [pc, r3]
2 10054: .byte 0x4 ; branch to case 0
3 10055: .byte 0x6 ; branch to case 1
4 10056: .byte 0x8 ; branch to default case
5 10057: .byte 0x0 ; padding
6 10058: ldr r4, [r0] ; case 0
7 1005A: b 0x1005E
8 1005C: ldr r4, [r0, #4] ; case 1
9 1005E: ...

Listing 5. Table Branch Byte (TBB) Instruction

Appendix B.
Alternative Design Choices

Transparent Code Pointer Decoding: In the current
design, we instrument indirect calls and function returns
to explicitly invoke secure services that decode the code
pointers. This instrumentation can be eliminated. Specific-
ally, we can reserve and set a bit in the code pointer
so that the resulting address always falls within the re-
gion of secure memory. When branching to this specially
encoded pointer, a SecureFault exception will happen. It
automatically traps into the secure runtime and we can
perform the decoding in the handler. Unfortunately, in
our experiments with this idea, the performance overhead
becomes much higher than the current design. This is
because exception handling involves more costly context
switching operations, whereas our optimized implementa-
tion in assembly avoids saving and restoring the processor
context. Essentially, we sacrifice storage for performance.

Rewriting Direct Calls as Indirect Calls: If the current
design, after a randomization is performed, the secure
runtime directly adjusts the offset in the direct call instruc-
tions at run-time. This can be avoided if we replace direct

calls with indirect calls and use the function dispatch
table to find the real target. However, since direct calls
are frequently used in programs, the added overhead of
trapping to the secure runtime actually outweighs the time
required to adjust the direct call offsets. This has been
verified in our experiments.

PIC: The position-independent code (PIC) [80] allows
code to be placed at any locations using PC-relative ad-
dressing. Therefore, it is widely adopted in shared libraries
and to enable ASLR in commodity OSs. While PIC makes
randomization easier, it needs the library vendor to re-
compile the code. More importantly, it is unsuitable for
MCUs for the following reasons. First, PIC introduces
more overhead because references to global objects are re-
directed via the Global Offset Table (GOT). This requires
additional redirection instructions (PLT) as well as more
memory to store the GOT. That is why PIC is rarely used
in MCU firmware. Second, direct calls within a library
are not redirected in PIC. This means doing function-level
randomization will still break the direct call references.

Appendix C.
Special Cases of Binary Rewriting

During development, we encountered some special
cases that need special treatment. Two of them are not-
able: zero-sized symbols and fall-through symbols. These
special cases mainly occur in libc (e.g., newlibc) or
compiler run-time (e.g., libgcc). For the zero-sized
symbols, we infer its size by calculating the offset from
itself to the following symbol. By fall-through symbols,
we mean a function does not end with a return instruction
but falls through the range of the following function.
Doing a randomization would break their connection. To
solve this problem, we insert a branch instruction B at the
end of the fall-through function to explicitly jump to the
intended instruction – the start of the following function.

Appendix D.
Transparent Support of MCU OS

MCU OSs, such as FreeRTOS, typically leverage the
hardware-generated exception frame as part of the task
context. When a new task is created, the kernel hand-
crafts an exception frame in which the PC slot is assigned
with the pointer to the task entry. Note that this entry has
been encoded since it is a normal function pointer. When
the new task is scheduled to run, the kernel executes an
exception return by branching to EXC_RETURN. We have
replaced this instruction to call secure_return_ven-
eer. It decodes the code pointer on the exception stack
and then invokes the real exception return. This leads to
the new task beginning execution.

Task switching is triggered by the PendSV inter-
rupt. Since HARM properly handles interrupts by encoding
the exception return addresses at entries and decoding
them at exits, task switching works smoothly with re-
randomization. Note that HARM does not incorporate any
OS-specific instrumentation. By this OS-agnostic design,
HARM is compatible with any OS in theory. We have
verified this claim by testing it with FreeRTOS in our
evaluation.

536

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 06,2024 at 05:23:39 UTC from IEEE Xplore. Restrictions apply.

