
#BHEU @BlackHatEvents

Good Motive but Bad Design:
Pitfalls in MPU Usage in Embedded Systems in the Wild

Wei Zhou, Zhouqi Jiang, Le Guan
UNIVERSITY OF

GEORGIA

#BHEU @BlackHatEvents

About Us
Wei Zhou
 Associate Professor at Huazhong University of Science and Technology

 Research interest: IoT Security and Program Analysis

 Published at: ACM CCS, USENIX Security, ESCRIOS, etc.

Zhouqi Jiang
 Graduate student at Huazhong University of Science and Technology

 Research interest: IoT Security and Trust Computing

Le Guan
 Assistant professor at the University of Georgia

 Research interest: Systems Security and IoT Security

 Published at: ACM CCS, USENIX Security, NDSS, IEEE S&P, ICSE, etc.

#BHEU @BlackHatEvents

Agenda
 Introduction to Memory Protection Unit (MPU)

MPU adoption in the wild

 Common pitfalls and limitations in using MPU

Mitigation suggestions

 Summary and disclosure

#BHEU @BlackHatEvents

What is Memory Protection Unit (MPU)
 The Memory Management Unit (MMU), a standard feature in

commodity computing platforms, is absent in resource-restricted
microcontroller units (MCUs)

 As a stripped-down version of MMU, the Memory Protection Unit
(MPU) provides basic security functions for MCUs, e.g., Arm Cortex-M
series MCUs

 How MPU works?
• For a limited number of configurable memory regions, MPU assigns access

permissions (e.g., R/W) based on the current privilege level of the execution

• A fault happens when a memory access violates the access permission

• MPU can only be configured by privileged code

#BHEU @BlackHatEvents

How to Program MPUs (PMSAv7)?
 Setting The Enable bit (LSB) in MPU Control Register (CTRL) to enable the MPU.
 Region Base Address Register (RBAR): address/size information of a memory region
 Region Attribute/Size Register (RASR): access permission/attributes of a memory region

• The XN bit in RASR also provides eXecure Never (XN) capability

• Attributes (e.g., cacheability and shareability) of each region can be configured by TEX, C and B fields in
RASR

• Large regions can be further divided into eight equally sized sub-regions, but it inherits the same
permissions with parent regions

 The PRIVDEFENA bit in MPU Control Register (CTRL) can be used to enable the default
memory map as a background region for privileged access.

 Constrains on memory regions
(1) At least 32 bytes (2) Power of two

(3) Must be aligned with 32 bytes (4) Limited region numbers (M0+/M3/M4 up to 8 and M7 up to 16)

#BHEU @BlackHatEvents

What’s new in PMSAv8?
 More MPU regions (up to 16 regions for both normal and secure world in M23 and M33)
 Use Start and Limit (end) address via separated MPU registers to define memory

regions, but still must be 32-byte aligned

 PMSAv8 also introduces a new memory attribute indirection register (MPU_MAIR),
making it easier for multiple regions to share the same attribute, while at the same time
maintaining their own access permissions

#BHEU @BlackHatEvents

Agenda
 Introduction to Memory Protection Unit (MPU)

MPU adoption in the wild

 Common pitfalls and limitations in using MPU

Mitigation suggestions

 Summary and disclosure

#BHEU @BlackHatEvents

MPU-enabled security functions
 Code Integrity Protection (CIP): Code regions can be set as non-writable by

unprivileged code to prevent code injection and manipulation.
 Data Execution Prevention (DEP): Data regions like stack or heap can be set non-

executable
 Stack Guard (SG): An inaccessible memory region can be placed at the stack boundary

to detect stack overflows
 Kernel Memory Isolation (KMI): User mode (unprivileged) code cannot access any

memory belonging to the kernel space without invoking system calls
 User Task Memory Isolation (TMI): User mode (unprivileged) tasks can only access its

own memory except explicitly shared memory regions that belong to other tasks or
kernel

#BHEU @BlackHatEvents

MPU adoption in popular MCU systems

 Only a few MCU OSs use MPU, especially for the open-source OSs
 Even if MPU is supported, only a few security features are enabled by default

OS
MPU

Support
MPU Support

CIP DEP KMI TSI SG PI

Open-
source

Contiki None - - - - - -
RIoT Optional Default-off- - - Default-off -
Mynewt None - - - - - -
LiteOS None - - - - - -
Zephyr Optional Default-onDefault-on Default-off Default-off Default-off Default-off
TinyOS None - - - - - -
FreeRTOS None - - - - - -
FreeRTOS-MPU Mandatory MandatoryMandatory Mandatory Mandatory - -
MbedOS Optional Default-onDefault-on - - - -
TizenRT Optional Default-offDefault-off Default-off Default-off Default-off -
CMSIS-Keil RTX Optional Default-offDefault-off - Default-off - Default-off
Azure RTOS ThreadX Optional Default-offDefault-off Default-off - - -

Proprietary

embOS Optional
Integrity RTOS Mandatory
NXP MQX RTOS Optional
Nucleus RTOS Optional
SafeRTOS Mandatory
μC/OS-Ⅲ Optional
VxWorks None

We try to find out the
reason in this work.

#BHEU @BlackHatEvents

Agenda
 Introduction to Memory Protection Unit (MPU)

MPU adoption in the wild

 Common pitfalls and limitations in using MPU

Mitigation suggestions

 Summary and disclosure

#BHEU @BlackHatEvents

Common pitfalls in using MPU
Weak protection

• Case study: Bypassing MPU protection in RIoT-MPU
• Case study: Privileged escalation in FreeRTOS-MPU

 Incomplete protection
 Prohibitive overhead
 Conflict with existing system designs

#BHEU @BlackHatEvents

Case Study : MPU-enabled RIoT
 Some MCU OSs like RIoT run all the code under privileged level
 They only provide some basic protections such as DEP, and stack

guard (SG) with MPU

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral N

stack for
OS kernel&IRQ handler

code for
Tasks

#0 #1

privileged

privileged

 Data Execution Prevention (DEP): RIoT enables
the MPU region number 0 to cover the whole RAM
region as non-executable

 Stack Guard (SG): RIoT defines the permission of
the last 32 bytes (the smallest MPU region) of the
main stack as read-only via the MPU region
number 1. Similarly, when switching to another task,
RIoT configures the last 32 bytes of the target task
stack as read-only via the MPU region number 1.
• Cannot detect stack overflow of individual stack frames

• Cannot detect control flow hijacking attack

#1

#1

#BHEU @BlackHatEvents

Bypassing MPU in MPU-enabled RIoT
 Bug: MPU can be disabled by control flow hijacking

attack (e.g., ROP)
 Cause: MPU control registers (e.g., MPU_CTRL)

are located in the system peripheral region, which
can be accessed by any privileged code. RIoT also
provides an easy-to-use driver APIs for MPU
configurations (e.g., mpu_enable and mpu_disable
driver APIs).

Weak Protection

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Stack for
task B

code for
OS kernel

Peripheral N

stack for
OS kernel&IRQ handler

code for
Tasks

#0
#1

privileged

privileged

#1

#1

Stack for
task A

#BHEU @BlackHatEvents

Attack Demo

#BHEU @BlackHatEvents

Common pitfalls in using MPU
Weak protection

• Case study: Bypassing MPU protection in RIoT-MPU
• Case study: Privileged escalation in FreeRTOS-MPU

 Incomplete protection
 Prohibitive overhead
 Conflict with existing system designs

#BHEU @BlackHatEvents

Case Study : FreeRTOS-MPU

 Background region in grey is enabled for privileged access only

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

Non-writeable code segment
for task and system call

data for
OS kernel

5-N User-defined E.g. peripheral isolation - -

code for
Tasks

#0

#1

#3

#2

#4

#4

#BHEU @BlackHatEvents

Security features in FreeRTOS-MPU
MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#4

#0

#3

#1

unprivileged

unprivileged

 Code Integrity Protection (CIP): All code region cannot be written
 Data Execution Prevention (DEP): All data regions and peripheral

regions are non-executable

#BHEU @BlackHatEvents

Security features in FreeRTOS-MPU

 User Task Memory Isolation (TMI): Unprivileged tasks
can only access their own stack and up to three user
definable memory regions (three per task)

 Kernel Memory Isolation (KMI): The FreeRTOS kernel
API and data are located in a region of Flash that can
only be accessed while the microcontroller is in
privileged mode (calling as system call causes a
temporary switch to privileged mode)

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#0

#3

#1

unprivileged

unprivileged

 Code Integrity Protection (CIP): All code region cannot be written
 Data Execution Prevention (DEP): All data regions and peripheral

regions are non-executable

#BHEU @BlackHatEvents

Look deeper in system call implementation
 For compatibility, FreeRTOS MPU does not provide new kernel APIs

for system calls, but wraps the original kernel APIs with the
xPortRaisePrivilege and vPortResetPrivilege to raise/drop privileges

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#0

#3

#1

unprivileged

unprivileged

Privileged

Weak Protection

#BHEU @BlackHatEvents

Privilege escalation in FreeRTOS-MPU
 Bug1 (v10.4.5 and before): An unprivileged task can raise its privilege

by calling the internal function xPortRaisePrivilege
 Cause: Privilege escalation function (xPortRaisePrivilege) is

separated with kernel function and can be called directly
 Patch (v10.4.6): Change xPortRaisePrivilege and

vPortResetPrivilege as macros.

Weak Protection

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#0

#3

#1

unprivileged

unprivileged

PrivilegedIs problem solved?

#BHEU @BlackHatEvents

Privilege escalation in FreeRTOS-MPU
 Bug2 (v10.4.6 and before): Privilege escalation by branching directly

inside system calls (MPU wrapper APIs) with a manually crafted
stack frame

Stack for
task B

Weak Protection

MPU

ARM

Cortex-M

task
BOS kernel

(privileged)

task
A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#0

#3

#1

unprivileged

unprivileged

Privileged

①

②
③

④
⑤

⑥

 Causes: Privilege escalation operation (SVC interrupt)
is separated with kernel API and uses stack to store
the original privilege level

#BHEU @BlackHatEvents

Exploitation Steps
Weak Protection

Buffer
（unprivileged）

…

vars

0x2000XXX

0x2000XXX+N

LR(Return Address)Stack
growth

Stack Frame
（A function in

unprivileged task)
Buffer

（unprivileged）

…

Padding

0x2000XXX

0x2000XXX+N

Address to SVC 2
Stack Frame

（A function in
unprivileged task)

Buffer
Overflow Buffer

fill
direction

Buffer
（unprivileged）

…

Padding

0x2000XXX

0x2000XXX+N

Address to SVC 2
Stack Frame

（A function in
unprivileged task)

Privilege Level
Manipulation

Stack Frame
(MPU wrapper

function)Privileged Level
SP①

②
③

④
⑤

⑥

#BHEU @BlackHatEvents

Attack Demo

#BHEU @BlackHatEvents

Patch
 Decide the original privilege level at the beginning with control register
 Introduced the portMEMORY_BARRIER macro to prevent instruction re-ordering when

GCC link time optimization is used

#BHEU @BlackHatEvents

Privilege escalation in FreeRTOS-MPU
 Bug3 (v10.4.6 and before): An unprivileged task can invoke any

function with privilege by passing it as a parameter to
MPU_xTaskCreate, MPU_xTaskCreateStatic, MPU_xTimerCreate,
MPU_xTimerCreateStatic, or MPU_xTimerPendFunctionCall

 Cause: Privileged and unprivileged tasks can be
created with the same kernel API (xTaskCreate) with
different parameters (uxPriority) which is also wrapped
within many system call functions

Stack for
task B

MPU

ARM

Cortex-M

Task B
OS kernel
(privileged)

Task A

MEMORY

Peripheral A

Peripheral B

code for
system calls

Stack for
task A

Stack for
task B

code for
OS kernel

Peripheral C

Peripheral N

data for
OS kernel

code for
Tasks

#2

#4

#0

#3

#1

unprivileged

unprivileged

Task A’
privileged

#BHEU @BlackHatEvents

Exploitation Steps
Weak Protection

Buffer
（unprivileged）

…

vars

0x2000XXX

0x2000XXX+N

LR(Return Address)Stack
growth

Stack Frame
（A function in

unprivileged task)
Buffer

（unprivileged）

…

Padding

0x2000XXX

0x2000XXX+N

Address to
MPU_xTaskCreate

Stack Frame
（A function in

unprivileged task)

Buffer
Overflow

Stack Frame
(MPU_xTaskCreate)

SP
Padding

Task A
Parameters

SP+0x10

SP+0x2C
Padding

uxPriority
(2|portPrivilige_bit)

New task with
privileged level

#BHEU @BlackHatEvents

Attack Demo

#BHEU @BlackHatEvents

Common pitfalls in using MPU
Weak protection

• Case study: Bypassing MPU protection in RIoT-MPU
• Case study: Privileged escalation in FreeRTOS-MPU

 Incomplete protection
 Prohibitive overhead
 Conflict with existing system designs

#BHEU @BlackHatEvents

Incomplete protection
 No protection for interrupt handlers

• Exception vector reads from the Vector Address Table always use the default
system address map and are not subject to an MPU check

• Interrupt handlers (handle mode) run in the privileged mode, which can access any
resources

 Incomplete protection for peripherals
• Any load, store or instruction fetch transactions to the PPB, within the range

0xE0000000-0xE00FFFFF (system peripherals), are not subject to an MPU check.
• Due to the programming constrains (e.g., at least 32B and alignment), MPU is not

suitable for protecting peripherals with small regions

#BHEU @BlackHatEvents

Incomplete protection
 Incomplete permissions assignment

• No execute-only (XO) permission
• Privileged permission ≥ Unprivileged permissions

#BHEU @BlackHatEvents

Prohibitive overhead
 To leverage MPU to realize kernel/task isolation, invocation to kernel APIs

has to go through context switch twice
• Our experiment shows that one thousand privilege switches in a FreeRTOS-MPU

system takes 3.5ms on average on the MPS2+ FPGA prototyping system broad
(Cortex-M4 AN386) with 25MHZ CPU clock frequency.

MPU regions need to be re-configured for different tasks and applications.
• FreeRTOS has to reset MPU regions #5-7 during an application switch
• Tizen has to reset MPU regions #3-7 during an app (including multiple tasks) switch

and #6 and #7 during a task switch

#BHEU @BlackHatEvents

Conflict with exiting system design
 Limited MPU regions for real world applications

• Very few available user-defined regions for peripheral isolation
• No OS provides peripheral isolation by default.

• Very few available regions shared between two tasks
• No OS provides shared memory protection by default.

• Impossible to enable too many security features at same times
• E.g.: When activating all MPU features provided by Tizen, there is no more available MPU

regions on ARM Cortex-M0+/M3/M4 based MCUs which only support eight MPU regions

 Porting software leveraging MPU may cause compatibility issues
• Only 30% manufacturers implement MCU hardware security features into current

design

#BHEU @BlackHatEvents

Agenda
 Introduction to Memory Protection Unit (MPU)

MPU adoption in the wild

 Common pitfalls and limitations in using MPU

Mitigation suggestions

 Summary and disclosure

#BHEU @BlackHatEvents

Minimizing pitfalls
 Be careful about permission overlap

• Observation: Most OSs use lower-number MPU regions for kernel protections (All
open-source OS except for latest FreeRTOSv10.5).

• Risk: Developer could configure those higher numbered user-defined MPU regions
to override kernel protections.

• Recommendation: System and general protection (e.g., KMI, DEP,CIP) should use
higher-number MPU regions.

#BHEU @BlackHatEvents

Minimizing pitfalls
 Be careful about privilege switch during system call

• Observation: OSs wrap the kernel APIs with separated privilege switch function
as system calls (e.g., FreeRTOSv10.5.0 before).

• Risk: Privilege escalation with control flow hijacking attack or a manipulable stack.
• Recommendation: MCU OS should use individual system calls for kernels API

with software interrupts like Linux or additional caller checks should be performed
before system call invocations, and the kernel should make sure the privilege is
dropped after system calls.

#BHEU @BlackHatEvents

Minimizing pitfalls
 Privilege separation is also needed for general protections

• Observation: OSs which only provide protections like Stack Guard, DEP and CIP,
always run the whole system at the privileged level like RIoT.

• Risk: Disabling the desired protections by reconfiguring MPUs with control flow
hijacking attack.

• Recommendation: System should drop privilege immediately after MPU
configuration.

#BHEU @BlackHatEvents

Region usage optimization
 Be aware of the default ARMv7-M address map permissions.

• Default memory access permissions/attributes of memory regions is enforced by ARM without MPU

• E.g., non-executable for standard and system peripheral regions

Task B Stack
5KB

Task A Stack
3KB

MEMORY
(ARMv7-m)

MEMORY
(ARMv7-m)

 Taking advantage of Sub-regions
• Save memory usage.

Task B Stack
5KB

Task A Stack
3KBRunning Task A

4KB MPU region

Running Task B
8KB MPU region

8KB memory used
with one region
Running Task B
SRD = 11111000
Running Task A
SRD = 00000111

12KB memory used

Without Sub-region With Sub-region

#BHEU @BlackHatEvents

Region usage optimization

Peripheral A
Peripheral C

 Taking advantage of Sub-regions
• Saving memory usage
• Saving MPU regions

Peripheral H

Peripheral G

Peripheral F

Peripheral E

Peripheral D

Peripheral C

Peripheral B

Peripheral A

Unprivileged

Privileged

Peripheral H

Peripheral G

Peripheral F

Peripheral E

Peripheral D

Peripheral C

Peripheral B

Peripheral APrivileged
(background

region)

SRD
1
0
1
0
1
1
1
0

Only one
MPU Region

At least three separated
MPU Region needed

Without Sub-region With Sub-region
MEMORY MEMORY

#BHEU @BlackHatEvents

Software workaround
 Protecting the user-defined sensitive resource (i.e., ensuring code can only access its

required data) rather than OS itself
• Minor (NDSS 2018) isolates tasks with memory view switches (task and kernel are all running on

unprivileged level) to avoid privilege escalation

• ACES (USENIX Security 2018) isolates compartments based on code functionality.

Hardware Retrofitting
 A redesigned MPU can addresses the insecurity and inflexibility in a lightweight way.

• ARMv8-M architecture extends TrustZone technology to Cortex-M series. The secure regions can be used
as additional regions and be assigned with higher privileged level beyond privileged level in normal world.

• Trustlite proposed execution-aware MPU which the not only validates data accesses (read/write/execute)
but additionally considers the currently active instruction pointer as the subject performing the access.

#BHEU @BlackHatEvents

Agenda
 Introduction to Memory Protection Unit (MPU)

MPU adoption in the wild

 Common pitfalls and limitations in using MPU

Mitigation suggestions

 Summary and disclosure

#BHEU @BlackHatEvents

Summary
 To our surprise, we found that MPU as a ready-to-use security feature

for protecting microcontroller is rarely used in real-world products
We studied the source code of multiple MCU OSs to find explanations for

this situation and eventually identified some common pitfalls.
 Some of the flaws are fundamental and not remedial in a short term
We give recommendations for better use of MPU

#BHEU @BlackHatEvents

Disclosure
 All bugs we demonstrated has been patched in latest FreeRTOS kernel

• Security update Reference: https://www.freertos.org/security/security_updates.html

 RIoT developer team has acknowledged our finding, but the benefit of
disabling access to the MPU or the `mpu_disable()` function without a
userspace / kernelspace split is quite limited, only mildly increases the
attack surface in the context of the attack model RIOT assumes.

https://www.freertos.org/security/security_updates.html

#BHEU @BlackHatEvents

Thank you

UNIVERSITY OF

GEORGIA

Wei Zhou, Zhouqi Jiang, Le Guan

	幻灯片编号 1
	About Us
	Agenda
	What is Memory Protection Unit (MPU)
	How to Program MPUs (PMSAv7)?
	What’s new in PMSAv8?
	Agenda
	MPU-enabled security functions
	MPU adoption in popular MCU systems
	Agenda
	Common pitfalls in using MPU
	Case Study : MPU-enabled RIoT
	Bypassing MPU in MPU-enabled RIoT
	幻灯片编号 14
	Common pitfalls in using MPU
	Case Study : FreeRTOS-MPU
	Security features in FreeRTOS-MPU
	Security features in FreeRTOS-MPU
	Look deeper in system call implementation
	Privilege escalation in FreeRTOS-MPU
	Privilege escalation in FreeRTOS-MPU
	Exploitation Steps
	幻灯片编号 23
	Patch
	Privilege escalation in FreeRTOS-MPU
	Exploitation Steps
	幻灯片编号 28
	Common pitfalls in using MPU
	Incomplete protection
	Incomplete protection
	Prohibitive overhead
	Conflict with exiting system design
	Agenda
	Minimizing pitfalls
	Minimizing pitfalls
	Minimizing pitfalls
	Region usage optimization
	Region usage optimization
	Software workaround
	Agenda
	Summary
	Disclosure
	幻灯片编号 45

