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ABSTRACT
The supervisory software is widely used in industrial control sys-

tems (ICSs) to manage field devices such as PLC controllers. Once

compromised, it could be misused to control or manipulate these

physical devices maliciously, endangering manufacturing process

or even human lives. Therefore, extensive security testing of super-

visory software is crucial for the safe operation of ICS. However,

fuzzing ICS supervisory software is challenging due to the preva-

lent use of proprietary protocols. Without the knowledge of the

program states and packet formats, it is difficult to enter the deep

states for effective fuzzing.

In this work, we present a fuzzing framework to automatically

discover implementation bugs residing in the communication pro-

tocols between the supervisory software and the field devices. To

avoid heavy human efforts in reverse-engineering the proprietary
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protocols, the proposed approach constructs a state-book based on

the readily-available execution trace of the supervisory software

and the corresponding inputs. Then, we propose a state selection

algorithm to find the protocol states that are more likely to have

bugs. Our fuzzer distributes more budget on those interesting states.

To quickly reach the interesting states, traditional snapshot-based

method does not work since the communication protocols are time

sensitive. We address this issue by synchronously managing exter-

nal events (GUI operations and network traffic) during the fuzzing

loop. We have implemented a prototype and used it to fuzz the

supervisory software of four popular ICS platforms. We have found

13 bugs and received 3 CVEs, 2 are classified as critical (CVSS3.x

score CRITICAL 9.8) and affected 40 different products.
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1 INTRODUCTION
The Industrial Internet of Things (IIoT) is rapidly expanding the

inter-connectivity of industrial control systems (ICSs). This openness
breaks the original assumption that ICSs are isolated systems that

run specialized tasks, resulting in a fairly widespread of cyber

threats into the industrial control field. This is evidenced by the

recent power grid attack in Ukraine [8] and the ransomware attack

on TSMC’s factory [24].

There are two main categories of targets in an ICS attack – the

devices that control manufacturing processes and the correspond-

ing software that manages the devices. Category I targets include

devices such as Programmable Logic Controller (PLC), Remote

Terminal Unit (RTU), and Programmable Automation Controller

(PAC). Each device is usually deployed together with several corre-

sponding management software which is not running on the device

but on a designated computer. Category II targets include various

management software such as Human Machine Interface (HMI),

Engineering Software, and Configuration Software. We call this

kind of software as supervisory software.
In this paper, we focus on analyzing the insecurity of the su-

pervisory software for PLC devices. More specifically, we focus on

identifying the protocol implementation flaws within supervisory

software. Supervisory software could be a very attractive target of

attackers due to two main reasons. First, once compromised, the

supervisory software for a PLC device can conveniently inject mali-

cious program logic into the PLC (through the predefined network

interface) without the need to obtain any additional authorizations.

For example, the compromised supervisory software may compile

the PLC program and perform a malicious update. Second, although

the supervisory software for a PLC device is running on a desig-

nated, well-protected computer, its interactions with the PLC are

not tightly protected. Such interactions are implemented through a

TCP session initiated by the supervisory software. Since commer-

cial supervisory software does not enforce strict security checks on

whether the PLC it is interacting with is the right one, it is fairly

feasible for the attacker to use a “stepping stone" (e.g., a malicious

insider) to firstly hijack such a TCP session and then interact with

the supervisory software to exploit its protocol implementation

flaws. It is found in survey studies [16] that insider attacks are
top security challenges for air-gapped ICS. Besides insider attacks,

the stepping stone could be any internal computer compromised by

multi-vector malware attacks (e.g., a variant of Stuxnet) launched

from outside.

Fuzz testing is a simple but effective method for finding software

bugs [28]. It is widely used by researchers and security analysts to

identify security bugs in real-world software. However, there is few

research on fuzzing supervisory software in ICSs, and the existing

fuzzing tools are still quite limited in serving this new purpose.

Specifically, it challenges the existing work in three aspects: (1)

Supervisory software generally runs on a Windows System. It is

closed-source with bulky size of the executables (see Section 5.2)

and heavy use of GUI. (2) It plays a client role in the communication

and harder to test with regular fuzzers. (3) Supervisory software

Table 1: Comparison ICS3Fuzzer with existing work

Study closed binary client-role

GUI-

management

Proprietary-

protocols?

AFLNet [35] % % % %

PripFuzz [32] ! % % !

Pulsar [15] ! ! % !

Polar [25] % % % %

Peach* [26] % % % %

Kif [1] ! % % !

Achilles [41] ! % % %

ICS3Fuzzer ! ! ! !

generally uses a proprietary protocol to communicate with a PLC

device. Meanwhile, protocol states are highly coupled with GUI

operations (see Section 3).

Prior efforts. To our best knowledge, there is no fuzzing work

geared towards the supervisory software. We summarize several

mostly related work as follows. Senthivel et al. [36] discuss bug

exploitation in the context of supervisory software protocol im-

plementation, but how to discover the bugs is not mentioned. In

terms of protocol implementation fuzzing, many approaches [1,

15, 25, 26, 32, 35, 41] strive to generate effective inputs based on

protocol formats and states. These studies have at least one of

the following limitations: (i) Some works depend on the program

source code [25, 26, 35]. (ii) Some works only handle server-role

programs [1, 25, 26, 32, 35, 41]. (iii) All works do not involve GUI

synchronization management during protocol communication. (iv)

Some works that handle proprietary protocols, but are not general

enough to be applicable to fuzz supervisory software [1, 15, 32].

Pulsar [15] is similar to our work. However, it cannot be fully auto-

mated according to the limitation author claimed. Indeed, Pulsar

did not involve in synchronized controls of GUI operations and

network communication during the fuzzing loop. The comparison

with related work is shown in Table 1.

It can be seen that the coupling of GUI and proprietary protocol

implementation brings a major challenge. Conceptually, we could

identify and extract the protocol implementation module to write a

harness for focused fuzzing. In practice, the process is extremely

difficult and buggy. WINNIE [21], a recent work, points out that

a group of M.S. students spend 3 days to produce 7 harnesses.

Moreover, WINNIE supports writing harness within ONLY two

components (focuses on file parser programs), but could not be

applied to highly-coupled protocol implementations in supervisory

software. Besides, generating effective inputs and fuzzing the deep

state space of proprietary protocol are also non-trivial.

Our Approach. In this paper, we propose ICS Supervisory

Software Fuzzer (ICS3Fuzzer), a portable and modular framework

which supports automated fuzzing of a variety of supervisory soft-

ware. We avoid analyzing and extracting the protocol implementa-

tion modules to write harness. Instead, we run and fuzz the whole

supervisory software, with the synchronized controls of GUI oper-

ations and network communication. Except for modest one-time

manual effort required for each fuzzing target (see Section 5.5),

our fuzzer is fully automated. Because the instrumentation of the

bulky sized supervisory software will greatly increase the over-

head, ICS3Fuzzer is black-box in the fuzzing loop. On this basis,
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Figure 1: Typical Communication Architecture of ICS

ICS3Fuzzer drives the fuzzing process continuously by automati-

cally reaching different protocol state-space and feeding effective

carefully-generated inputs. Besides, to achieve good state cover-

age and improve the efficiency of ICS3Fuzzer , we propose a new
fuzzing strategy to switch states dynamically. Although it sacrifices

performance of fuzzing speed, ICS3Fuzzer is effective, scalable, and
easy to use. Once a bug is found, it is also convenient to reproduce

it.

Finally, there are two options to deploy the proposed fuzzing

approach: (a) letting a dedicated PLC device conduct the fuzz testing;

(b) simulating the response of the PLC device. We tried both options

and found that the first option is slow and not scalable. Therefore,

we propose a hybrid solution that leverages the strengths of both

the real PLC and the simulated responses while avoiding their

weaknesses. As a result, we successfully simulated the responses

of four different devices and used them to conduct fuzz testing

against the corresponding commercial supervisory software, and

13 zero-day bugs were found.

In summary, we make the following contributions:

• We designed and implemented ICS3Fuzzer , a portable, mod-

ular framework to fuzz the supervisory software of ICS.

ICS3Fuzzer is customizable to support the fuzz testing against

different supervisory software (with different GUI operations

and proprietary protocols) from various vendors.

• Wepropose a new fuzzing strategy, which selects input states

based on execution trace and corresponding inputs.

• In our evaluation, we used ICS3Fuzzer to test 4 different

commercial supervisory software from different vendors.

Our experiments discovered 13 zero-day bugs and received

3 CVEs, 2 of them are classified as critical (CVSS3.x score

CRITICAL 9.8) and affected 40 different products in ICS.

Our prototype is open source at https://github.com/boofish/

ICS3Fuzzer.

2 BACKGROUND AND MOTIVATION
2.1 ICS Architecture
An ICS is a distributed computerized system that manages, moni-

tors, controls, and automates industrial processes. ICSs have been

widely deployed in critical infrastructures. As shown in Fig. 1, the

architecture of a typical ICS (SCADA system) consists of three

layers [11]: (i) Field Instrument Control Layer consists of sensors

and actuators that serve as the input/output of the system; (ii) Pro-
cess Control Layer consists of dedicated embedded devices (e.g.,

PLCs/RTUs) to control real-time processes. They are connected to

the field devices to sample sensor readings and to operate actuators

based on the control logic programmed and loaded by the supervi-

sory control layer; (iii) Supervisory Control Layer consists of several
workstations used to provide real-time monitoring and control ca-

pabilities of the devices in the system. For example, the system

operator can monitor and control the whole ICS via the Human-

Machine Interface (HMI) machines, while the system programmer

can program and debug the PLCs with an Integrated Development

Environment (IDE). In this paper, we collectively call these pieces

of software supervisory software.

There are several distinct characteristics in an ICS environment.

First, an ICS directly interacts with the physical world. As such, a

defect in it could impose a significant risk to the safety of human

lives or cause serious damage to the environment [37]. Second, to

ensure safe operation, an ICS must provide high reliability and

meet specific real-time constraints. This necessitates the use of

real-time OSes at the process control layer. Also, domain-specific

protocols, which are usually proprietary, are used to interconnect

the three layers. To decrease overhead, the proprietary protocols

usually take place in an unencrypted form [13]. Third, historically,

the ICS network is air-gaped, meaning that they are disconnected

from the Internet to reduce the attack surface. Therefore, the lack of

needed security mechanisms such as encryption was not a very big

concern. However, with the emergence of IIoT, this characteristic

no longer holds in many cases. This fact exposes vulnerable legacy

software open to attackers.

The supervisory software plays an important role in an ICS

environment. Specifically, they issue requests to pull real-time sta-

tus from the PLCs. They can also be used to program and install

firmware images for PLCs. Although individual ICS vendors provide

different solutions, the supervisory software shares lots of similari-

ties regarding the implemented functionality. For example, almost

all the supervisory software offer interfaces to read operational

variables, start/stop PLC, and download the firmware, etc. These

functionalities are communicated over a vendor-specific channel,

which carries three types of data, including (1) real-time device sta-

tus (e.g., sensor readings, feedback of control command execution,

heartbeat messages, etc.), (2) device information (e.g., device name,

version, model, manufacturer, and other information), (3) structured

data block (e.g., program blocks, memory blocks, diagnostic files,

etc.).

2.2 Security Risks Exposed by Supervisory
Software

In manufacturing industry, both OT network and IT network are

required to let a factory floor produce designated products. Su-

pervisory software is running (under the supervision of a human

operator) on a workstation inside the OT network. Although strong

isolation is enforced between the IT network and the OT network

to better defend cyber-attacks, APT (Advance Persistent Threats)

attacks could still break the isolation and compromise part of the
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Figure 3: Forging malicious commands with RCE

OT network. In real-world exploits, reusing control logic of supervi-

sory software in an APT attack was attractive and clearly observed

(e.g., Stuxnet attack [12]).

Assumption. Before exploiting the supervisory software, we

assume that a powerful attacker has accessed one host of ICS. On

this basis, we also assume that the powerful attacker can then

monitor, intercept, andmodify the network communication of other

hosts based on a man-in-the-middle (MITM) attack. In real-world

ICS exploits, MITM is commonly used. This includes the infamous

Stuxnet [12] and IRONGATE [20]. According to a report conducted

by U.S. Department of Homeland Security (DHS), ICS protocols

or communication channels are particularly vulnerable to MITM

attacks [30]. Other related studies [18, 22, 36] hold the same opinion.

Attack Approaches and Consequences.With the MITM, the

attackers can intercept and manipulate the network traffic between

the supervisory software and a PLC. If the supervisory software

is vulnerable, the attackers can achieve multiple disastrous attack

goals. First, they can crash the supervisory software (Fig. 2). This

kind of attack is also demonstrated by Senthivel et al. [36]. As a

result, the devices in the process control layer lose control, and

the real-time status cannot be updated. Second, by exploiting a

remote code execution (RCE) vulnerability, the attacker can leverage

existing logic of supervisory software to forge control commands,

such as installing a malicious firmware into the PLC devices (Fig. 3).

These attacks root in the fact that ICSs were designed for closed

environments, where every node in the network is trusted and

works as intended. However, this assumption no longer holds with

the development of IIoT.

In both cases, it is clear that the attacker relies on an exploitable

implementation bug in the communication protocol between the su-

pervisory software and PLC devices. Finding these bugs beforehand

is crucial for the security of ICS.

3 DESIGN OVERVIEW
3.1 Movitating Example
We first show a real TCP session between supervisory software

GX Works2 and a PLC (see Fig. 4). During the TCP session, there

are many input states exposed to obtain network data. Note that

in each particular input state, the supervisory software waits for

a certain kind of network data from the PLC device. In this paper,

when we discuss the state-space of the supervisory software for

a PLC, we are essentially discussing its different input states. To

avoid ambiguity, we informally define a session type as a distinct
functionality offered by the supervisory software, where a sequence

of packets are exchanged in both directions. A functionality is one

kind of supervisory semantic (e.g., download program to PLC, start

PLC, show status). We note that given the supervisory software,

we can leverage domain knowledge (e.g., manuals) to learn most if

not all of its functionalities and session types.

Key observation. (a) The start point of an above-mentioned

TCP session is usually a button-pushing operation performed by

a human operator through the GUI provided by the supervisory

software. As soon as the operator clicks the corresponding button,

the supervisory software will conduct the 3-way handshake with

the PLC device. Then packets will be exchanged in both directions.

(b) In the middle of the session, we observe that in many cases

additional button-pushing operations are performed by the operator.

For example, when the functionality is downloading a program onto

the PLC, the operator firstly clicks the “connect" button to create

a new TCP session. However, this button-pushing operation itself

cannot complete this task/functionality. Hence, a fewmoments later,

the operator will click the “download" button to let the same TCP

session fully complete its mission.Without the operator pushing the

“download" button, the supervisory software will not start sending

the program’s content to the PLC. (c) Finally, the session ends by

periodically exchanging heartbeat messages or stopping all the

message exchanges.

New Insight. The key observation indicates that the supervi-

sory software usually has different behavior (i.e., code execution) in

different interaction states. An interaction state of the supervisory

software is essentially a particular program execution context in

which it interacts with the PLC device. An interaction state is de-

termined by several factors, including the previous button-pushing

operations and the previous input states. For example, without the

operator firstly pushing the “connect" button, the “download" but-

ton will remain greyed out and not clickable. For another instance,

whether an input state can be tested depends on whether the cur-

rent interaction state is the right one. This also indicates that the

protocol implementation of supervisory software is high-coupled

with GUI interfaces.

3.2 Challenges
Based on the key observation and the new insight, we found that

testing supervisory software is very challenging. In particular, we

summarize following three challenges.

C1: Guiding the supervisory software to enter a specific
input state. In the supervisory software’s viewpoint, each session

involves multiple input states. Accordingly, there are at least three
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Figure 4: Interaction between supervisory software and de-
vice.

barriers to achieve a good coverage of these input states. First, be-

cause all the TCP sessions are initiated by the client-role supervisory

software, the fuzzing tool has to (passively) “wait" until receiving a

session-establishing request from the supervisory software. Second,

to fuzz an input state, we must trigger the supervisory software to

enter the right interaction state again and again, which involves

the synchronization among three entities: the button-pushing GUI

operation, code execution in the supervisory software, and the

device response (see Fig. 4). Without designing a mechanism to

manage the GUI operations and the network traffic automatically

and synchronously, it is pretty hard to enable the fuzzing tool to

feed mutated data repeatedly to a specific input state. Third, due

to the sophisticated dependency relationships between the input

states, in many cases one input state cannot be directly entered

without the supervisory software firstly entering some other input

states. Even worse, identifying a rather complete set of input states

based on traffic is itself a challenging problem. Please note that

different supervisory software have different input states.

C2: Fuzzing proprietary protocolswith unknownmessage
frame format and state-space. Supervisory software generally

uses a proprietary protocol to communicate with a PLC device, and

the protocol has unknown state-space (i.e., input states) and format.

Unknown state-space makes it less likely to explore deep paths

and deep protocol states. In addition, with unknown packet frame

format, the value constraints for certain fields and the relevant

dependencies between fields are hard to be inferred. This may limit

a fuzzing tool’s ability to generate effective inputs.

C3: Simulating the session of proprietary protocol. Before
entering a specific input state, each request issued by the supervi-

sory software, we must provide the correct response. A straightfor-

ward approach is to use the real device to maintain the interaction.

However, the solution depends on hardware is expensive and not

scalable. Simulating the session is a promising choice but it requires

a comprehensive understanding of proprietary protocols.

To address the challenges, for C1, we design a novel control mech-

anism to achieve entering any identified input states by accurate

synchronized control of GUI operations and network communi-

cation. For C2, we adopt an existing work [5] to reverse-engineer

the packet frame format of the protocol. Besides, we also perform

a differential analysis to identify the fields and recognize value

constraints for such fields as session ID, sequence number, etc.

In order to identify the valuable protocol states and filter dupli-

cated states, we avoid reverse-engineering the detailed program

states. Instead, we construct a state-book based on execution trace

and the corresponding inputs. To achieve good state coverage and

improve the efficiency of ICS3Fuzzer , we propose a new fuzzing

strategy to switch states dynamically. For C3, we simulated the

response of the PLC device by constructing a set of communication

templates/patterns based on real captured traffic. For each request

from the supervisory software, ICS3Fuzzer firstly identifies the cor-

responding response in the matched template. ICS3Fuzzer then

automatically finds/adjusts the corresponding value constraint (i.e.,

session ID, sequence number, etc.), if any, for each involved field. In

case the constraints and dependencies are too complex to be found,

we will resort to the real PLC device.

4 DETAILED DESIGN
We present the detailed design of ICS3Fuzzer , as illustrated in Fig. 5.

At a high level, ICS3Fuzzer has two phases: i) In the pre-processing

phase, ICS3Fuzzer produces necessary information and tools to

assist the fuzzing phase to be fully automated. ii) In the fuzzing

phase, ICS3Fuzzer switches input states dynamically, then feeds

the generated test cases and monitors the status of the supervisory

software.

In the pre-processing phase, we analyze the functionality and the

proprietary protocol of a given supervisory software. For function-

ality, we focus on how to automatically start a session during the

fuzzing loop. For proprietary protocol analysis, we focus on how to

obtain the important knowledge of its state-space/format to assist

in choosing valuable input states and generate effective mutated

data. Besides, we also focus on how to simulate the communication

based on captured traffic to avoid being limited by the dedicated

hardware.

In the fuzzing phase, our framework is fully automated and con-

sists of four steps to work coordinately (see right-side of Fig. 5).

Firstly, it chooses a valuable input state based on information pro-

vided by state-book. Secondly, it generates mutated inputs based on

protocol format knowledge inferred. Then it feeds the mutated data

to the chosen input state based on automatically managing GUI

operations and network traffic synchronously. Finally, it monitors

the status of the supervisory software and records the malformed

input for reproduction.

4.1 Functionality Analysis
The goal of this step is to prepare UI components that will lead to

performing a task/functionality, producing a session through net-

work interface. We can leverage domain knowledge (e.g., manuals)

to learn most if not all its functionalities. Then we can start a session

of a functionality and expose input states. In order to automat-
ically perform functionality and start the session in fuzzing, we

need to prepare some “activators” (e.g., pushing a specific button) in

advance. An “activator” can be invoked to trigger GUI events (e.g.,
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keystrokes, mouse movement). For our discussion, we refer to this

kind of “activator” as a guiAutolit. In practice, we write guiAutolits

based on AutoIt Framework [3]. Two steps are needed: (i) Obtain-

ing GUI handle: A GUI handle uniquely identifies a GUI Control,

which can be easily obtained by AutoIt. Then we can write scripts

to manipulate GUI controls by providing handles to API functions

(e.g., ControlClick(), MouseClick()) defined in AutoIt. (ii) Defining

operation orders: A functionality is performed by a sequence of GUI

operations. Prerequisites of an operation require that the GUI has

been loaded and the corresponding control is enabled. For a given

functionality, its GUI operation orders can be defined manually.

Finally, the ICS3Fuzzer can invoke these guiAutolits to automate

the fuzzing loop.

4.2 Proprietary Protocol Analysis
To fuzz supervisory software efficiently, this step obtains important

knowledge about the the proprietary protocols used in the target

software. The specific tasks include inferring the protocol format,

obtaining state space, and building a template for simulating the

communication session.

4.2.1 Inferring Protocol Format. Inferring the format of propri-

etary protocol helps to guide the generation of effective test cases.

For this goal, there are many existing works proposed such as Dis-

coverer [9], Dispatcher [7] and Netzob [5]. Existing work is able

to meet our framework design needs, therefore, we integrated one

of the tools for easy development [5]. Details of inferring protocol

format are elided as it is not our contribution.

4.2.2 Obtaining State-Space. This step is to help identify and

distinguish input states in a session. In the viewpoint of supervisory

software, an activated session involves many input states (e.g., more

than 100 input states in the session when activating “show status”

functionality of “Proficy Machine Edition”). However, there are

also many input states are repetitive and similar (e.g., the state

corresponds to receiving heartbeat messages). To distinguish these

input states, a straightforward solution is to compare the similarity

of messages, but it is not accurate. Instead, we record the execution

trace triggered under the corresponding input state, where even

small differences in the messages but very different execution traces

can be easily distinguished. Therefore, when fuzzing, excessive

resources should not be spent to test these similar input states.

Instead, input states that can trigger rich and different execution

traces are more interesting. With this knowledge, we can switch

valuable input states for more efficient fuzzing (see 4.3).

Since our framework is universal, we avoid analyzing the input

states of a particular ICS protocol. Instead, we construct a state-book

based on code execution trace and the corresponding inputs, with-

out recovering the specific semantics of an input state. To collect

the execution trace, we leveraged the DynamoRIO [6] to dynami-

cally instrument the target supervisory software. Specifically, we

only recorded/dumped bitmap of the basic block executed during

message transmissions (by hooking and tracking “send()/recv()”

function). This is because we are only interested in the message

processing logic under the input state. Meanwhile, we also recorded

the original messages and their orders. Therefore, each input state

in state-book can be represented as a tuple, including the original

message, execution trace, and an index.

4.2.3 Device Emulation. In fuzzing, we need to act as a PLC

device role to feed the test cases to the supervisory software. Using

a dedicated PLC device for this purpose not only increases cost

but also is not scalable. To avoid being limited by the dedicated

hardware, we simulate the communication based on captured traf-

fic. Implementing this idea faces two challenges as mentioned by

Sushma Kalle [22]: When supervisory software initiates a request,

we need to (1) identify the corresponding response message in

the captured traffic, and (2) adjust the dynamic fields related to

maintaining a session in the response message, such as session ID,

sequence number fields, etc.

For the first challenge, we have insight that the contents of the

message are essentially the same when captured from the same

functionality with the same device. In other words, for a specific

run-time request from the supervisory software, there is a corre-

sponding record in the captured traffic. Therefore, we can construct

a request-response dictionary, in which the key is a request and the

value is a response.

For the second challenge, assuming that the protocol has a ses-

sion ID field to maintain the session. The field’s value is generated

in real time and varies in different sessions. If we do not adjust the

field and directly replay the response identified from the captured

traffic. Then the supervisory software will enter an error state,

causing subsequent session to fail. As a result, we cannot reach

the expected input state. We have summarized four dynamic fields

for industrial control protocols based on our analyses of 4 real ICS

platforms (see Section 5) and related work [4, 10].

• Sequence number: The field is used to represent the mes-

sage received/acknowledged, and it always increases 1 after

each interaction.

• Session ID: The field is used to represent a temporarily

created network session. Generally, the value of session ID

is issued by the device, then messages in the interaction will

carry this value.

• Time stamp: The field is used to represent the freshness of

the message. It relates to the real-time of running system,

and the receiver will check it. If it is found to be stale, the

message will not be well-processed.
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• Challenge-response: Generally, the device sends a mes-

sage with a challenge (random number) encoded, and the

supervisory software will calculate a response based on the

challenge. If the response is not correct, the session will be

terminated or the program enters a wrong state.

To identify the dynamic fields, we have two observations:

Observation 1: The heartbeat messages are common and their

contents are very similar but not the same. The difference reflects

dynamic fields of the proprietary protocol, such as the design of

sequence number.

Observation 2: The sequence of network traffic generated from

the same functionality is very similar. Each request-response pair

of one sequence could match a pair (most similar but not the same)

in another sequence. The difference of the corresponding messages

also reflects dynamic fields.

Based on these observations, we align and compare the differ-

ences between the corresponding messages to eventually obtain

many dynamic fields. For dynamic fields that are too complex to

be understood, we also dynamically replayed the related message

(correct the known dynamic fields) and determined whether the

field is related to the session management. If we cannot resolve the

dynamic field, we will resort to the real PLC device. Specifically, for

each request issued by the supervisory software, ICS3Fuzzer will
forward it to the real PLC device, and analyze the response from the

device, then we decide whether the response should be mutated or

directly forwarded to the supervisory software. Therefore, before

enter a specific input state, any request issued by the supervisory

software, ICS3Fuzzer can provide the response correctly.

4.3 State Selection
Based on the constructed state-book, each input state has three

attributes: index, execution trace, and the original message. For

each attribute, we assign a numerical value so that each state has

a weight. We leverage these weights to select the most promising

state to fuzz against. The weight assignment is based on three

hypotheses. (i) The “deeper” network communication is, the more

likely there exists a bug; (ii) When a message is forwarded to the

supervisory software, the more new basic blocks are hit, the more

likely there exists a bug; (iii) The more complex the input is, the

more likely it is to cause a crash.

Hypothesis (i) is well accepted in proprietary protocol fuzzing.

For the input state of a protocol, we use the index of its order in

the state-book to represent the degree of “depth”. In building the

state-book, we ignore states with high similarity with existing ones,

such as those exhibiting the same repeated behaviors. By repeated

behaviors, we mean the two states share many similar messages

and execution traces (i.e., the hit counts of blocks in bitmap). In

this way, we can avoid putting into the state-book the states with

“high” degree of depth but are actually very superficial based on

the protocol specification (e.g, a state with many heartbeat mes-

sages). We use Jaccard index to quantitatively measure message

similarity, which is the number of common fields between two

message sequences divided by the number of total fields in the

union of the two message sequences. The bitmap similarity is cal-

culated simply by the number common bits in the bitmap divided

by the total hit counts of bitmap. The final similarity is the result

of multiplying the message similarity and the bitmap similarity.

To decide if a state has a high level of similarity with an existing

state and thus should be ignored, we set a threshold. Obviously, the

lower the threshold is, the more states would be filtered out. On

the contrary, the higher the threshold is, many redundant states

would be in the state-book. To find a sweet spot, we set different

thresholds for similarity checks and manually examined the results.

Our experiments showed that using the threshold of 70%-95% can

filter out many repeated behaviors (e.g., heartbeat messages), while

retain a good number of unrepeated behaviors. In our evaluation,

we empirically chose 80% as the threshold to check state similar-

ity. Hypothesis (ii) is consistent with feedback-based fuzzer such

as AFL [43]. Hypothesis (iii) concerns with the complexity of the

input. The more complex the input is and the more diverse the

mutation is, the more likely it is to trigger new execution paths.

We use the number of identified fields within a message to indicate

its complexity. In summary, we use state depth, basic blocks count,

and field count within a message (depth, bb_count, field_count) to

represent the three state attributes mentioned before. We use these

values to calculate the weight of each input state via the following

formula.

wi =
1

3

(
depthi∑N−1

j=0 depthj
+

bb_cnti∑N−1
j=0 bb_cntj

+
f ld_cnt_i∑N−1

j=0 f ld_cnt_j
)

In the formula,
1

3
is used to normalize the sum of weights. N is the

number of states within a given session. Since selected input state

is computation intensive, it is only performed periodically during

fuzzing. The whole process is summarized in Algorithm 1. Line 1
filters out those repeated input states based on pre-processing phase

results. Line 2 calculates the weight of each input state according

to the state-book. Line 4 performs state selection according to state

weights.

Algorithm 1 State-selection based fuzzing loop

Input: Limited state count for a functionality, N
Limited test case for a specific input state,M
State book of a functionality, S

Output: Crashes Record, C
1: states ← FILTERED(S)
2: weiдhts ← GETWEIGHTS(states)
3: for i ← 0; i < N ; i++ do
4: cur_state ← CHOOSE(states,weiдhts)
5: j ← 0

6: while j < M do
7: mutated_input ← GENERATE(cur_state)
8: result ← RUN(cur_state,mutated_input )
9: if IsCrash(result ) then
10: item ← TUPLE(cur_state,mutated_input )
11: C ← APPEND(C, item)

12: end if
13: j ← j + 1
14: end while
15: end for
16: return C
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Figure 6: Communication topology of the ICS3Fuzzer

4.4 Inputs Generation
This step leverages the obtained protocol format to generate mu-

tated inputs. There are two tasks to be completed: (i) generate

inputs according to the reverse-engineered protocol format and (ii)

correct it with the discovered constraint relationship. For the first

task, instead of fully mutating one field, ICS3Fuzzer tries to cover all
fields as much as possible. After data is generated, we will correct

it with constraint relationships such as length field, session ID, and

sequence number constraints. After this step, the input state and

the mutated input are well-prepared.

4.5 Data Feeding
Tomake the supervisory software process the mutated data, feeding

data is the basis. Different from a regular target, fuzzing supervisory

software needs to synchronize network behaviors and GUI oper-

ations. ICS3Fuzzer achieves this synchronization goal through a

proxy-based control mechanism. Specifically, it combines the traffic
proxy, the GUI proxy, and the Dispatcher. Fig. 6 shows its commu-

nication topology. The traffic proxy intercepts the network traffic

between the supervisory software and “the device" (Note that we

use emulated device based on traffic simulation and wewould resort

to a real PLC device if the simulation fails). The GUI proxy controls

the GUI operations, including launching the program, pushing but-

tons and killing the process. The Dispatcher sends commands to the

traffic proxy to manage network traffic, and sends commands to the

GUI proxy to control GUI operations of the supervisory software.

On this basis, ICS3Fuzzer can feed data to the supervisory software

automatically. Fig. 7 depicts the workflow of data feeding.

4.6 Crash Monitor
This step is to monitor the status of supervisory software to capture

the triggered crashes. Our monitoring is based on the Windows

EventLog Service. Once an application crashes, a record will be

added in the Eventlog of Windows System with a tag Application
Error. The record not only includes crash information, but also

provides the context of crash to assist diagnoses. Therefore, in

each fuzzing cycle, we check the real-time records of the Applica-
tion category of the Eventlog. Note that we do not instrument the

Supervisory 
Software

GUI
Proxy

Traffic
Proxy

Dispatcher
(main fuzzer)

Launch the Supervisory softwareRun Supervisory Software

Activate Functionality

GUI operations

Network Request

Get Status

Status Response

Feeding mutated data

Network Response

Check Crashes

Status Response

Kill Process
Kill Process

Figure 7: Workflow of proxy-based data feeding mechanism

supervisory software during fuzzing due to performance consider-

ation (see Section 5.3). We only instrument the program during the

pre-processing phase to help analyze the protocol.

Program hangs are also widely used as an indicator of program

bugs which can potentially be exploited in DoS attacks. However,

based on our empirical study, detecting delays of ICS operations

and using them as bug indicators incur lots of false positives. This is

because whether a long delay should be considered as a bug or not

depends on specific scenarios. There is no standard to specify the

cutoff value to separate a normal response and a delayed response,

which makes it hard to filter out false positives. In our evaluation,

we therefore adopted a conservative strategy that does not consider

bugs causing by program hangs. However, this feature can be easily

enabled in the current prototype.

5 IMPLEMENTATION AND EVALUATION
5.1 Framework Implementation
We have implemented a prototype of ICS3Fuzzer , with 4000 lines of

codes, including 2400 lines of Python code, 900 lines of AutoIt script,

750 lines of C/C++ code. It could be conceptually split into two

phases of operation. In the pre-processing phase, we prepared and

collected necessary scripts/data for each target with minor manual

efforts. Specifically, we prepared a guiAutolits script for automatic

GUI operation of supervisory software based on AutoIt [3], and

obtained the protocol format based on Netzob Framework [5]. We

then leveraged the DynamoRIO Framework [6] to instrument the

supervisory software so that we could collect its run-time execution

trace. In the fuzzing phase, we leverage the reverse-engineered

protocol formats to generate mutated inputs based on the work [34].

We then fed the inputs with the synchronous control of GUI proxy

and traffic proxy, which was implemented from scratch in Python.

Finally, we used a script to check the Windows Eventlog service to

detect crashes.

Software Selection.We target four pieces of supervisory soft-

ware as part of ICS platforms from different vendors. We summarize
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the detailed information of the targets (name, vendor, version, bi-

nary size, and protocol) in the Table 2.

Testing Environment. ICS3Fuzzer ran on a Windows 7 ma-

chine powered by an Intel Xeon E3-1505M v6 CPU running at 3.00

GHz with 8 GB DRAM. The complete experiment environment also

included two proxies (traffic proxy and GUI proxy) on the Window

machine, and the target supervisory software.

5.2 Effectiveness and Comparison
Effectiveness in discovering bugs. By performing fuzz testing

on four different pieces of supervisory software with the ICS3Fuzzer
framework, we find 13 memory corruption bugs. All of them have

been responsibly reported to the vendors or the third-party vulnera-

bility database maintainers and got email confirmed. We summarize

the type of the bugs and the influenced vendors in Table 3. Among

them, 3 bugs have been assigned CVE numbers (CVE-2019-16353,

CVE-2021-20587, CVE-2021-20588). For bugs assigned with CVEs,

2 have been fixed by the vendors after receiving our report. These

memory corruption bugs are of high impact when exploited. By

crafting a proof-of-exploitation (PoE), we find that they can cause

denials of service (DoS) or remote code execution (RCE). For ex-

ample, according to an evaluation conducted by NVD (National

Vulnerability Database) based on CVSS 3.x, the threat of the vulner-

ability CVE-2021-20587 and CVE-2021-20588 is “CRITICAL” (basic

score is 9.8), and 40 different products are affected [33]. The wide ap-
plicability of this bug can be explained by the fact that the ICS man-

ufacturers often implement their proprietary protocols as shared

libraries and reuse them in all the relevant product lines. This also

highlights the necessity of discovering protocol implementation

vulnerabilities as early as possible.

Effectiveness in pruning input states. During the session, to
avoid wasting too many resources to fuzz these duplicate states,

we prune the states to build a deduplicated state-book (assigning

the weights of input states to 0). It can be seen from Table 4, these

include 22 sessions of 4 supervisory software, and we get 203 input

states by pruning nearly 1500 original input states.

Comparison the effectiveness of state selection. We are in-

terested in the effectiveness of state selection strategy proposed

in ICS3Fuzzer . As mentioned before, there is no fuzzer designed

for testing supervisory software. For example, no fuzzer supports

guiding the target software to a specific input state since no GUI or

traffic proxy is provided. To this end, we kept the original strategy

that randomly selects an input state from the unpruned state-book.

We call this fuzzing tool ICS3Fuzzer-less. We used ICS3Fuzzer and
ICS3Fuzzer-less to test 22 different functionalities. For each function-
ality, we allocated 48 hours. The tasks were paralleled using device

simulation. ICS3Fuzzer still performs better than ICS3Fuzzer-less
and can find 5 more vulnerabilities within the same time.

5.3 Performance
Due to the non-deterministic nature of fuzzing, after each fuzzing

cycle, the GUI of the supervisory software is also non-deterministic.

For example, the GUI could be frozen or some unforeseen inter-

face would pop up. In order to ensure the stability of the fuzzing

process and for the convenience of implementation, after feeding

the test case and checking the status of the program, our prototype

implementation will kill the process and restart the software for

a new iteration. Therefore, the time-cost is mainly composed of

four parts: restarting the supervisory software, operating the GUI,

network communication, and others. Table 5 gives the average time

cost of our experiments. Although the speed of a single test case is

slow (ranging from 5-20 sec a test case), it can be fully automated

and thus effectively fuzz commercial supervisory software. In the

meantime, since our solution does not rely on dedicated hardware,

the test speed can be increased by running multiple instances in

parallel. In the following paragraphs, we show the results of two

experiments to explain the implementation choice of our prototype.

Why NOT use Feedback-based Method. During early devel-

opment, we tried to implement a coverage-based feedback mecha-

nism to guide the test case generation using the genetic algorithm.

Specifically, we used the DynamoRIO framework [6] to instrument

the whole supervisory software to dynamically collect branch in-

formation. Similar to AFL, we maintained a run-time bitmap of

branch coverage which was fed to the AFL-based mutator. The

initial seed was a file consisting of messages that cover all input

states of a given TCP session. Finally, the mutator sent the test case

to the dispatcher, which is responsible for feeding the test case to

the target supervisory software. In our test on GX works2, no bug

was found during a 48-hour fuzzing campaign for a session.

Taking a close look at the fuzzing process, we found that the

fuzzing speed greatly impacted the fuzzing efficiency. In fact, we

found that GXWorks2 spent 34.9 seconds to restart with instrumen-

tation, while this number was 1.1 seconds without instrumentation.

Due to the significant slowdown, only about 4.5K test cases were

tested for 48 hours. Without a sufficient number of test cases to be

tested, the genetic algorithm can rarely make any progress. In fact,

in this experiment, we observed that most of the test cases (more

than 95%) cannot make through the initial input state S0. As a re-

sult, the deep state space of the protocol implementation cannot be

touched at all. To achieve a particle fuzzing system, ICS3Fuzzer sac-
rifices the advanced feedback mechanism for a faster fuzzing speed.

Future research is needed to further improve the feedback-based

methods in terms of high fuzzing speed (e.g., via parallelization)

and better protocol state management mechanisms.

WhyNOT use Snapshot-basedMethod. Based on Virtualbox,
we have implemented a prototype similar to [39]. Where a proxy

server and supervisory software are in the same virtual machine,

it can keep the state of the live connection between supervisory

software and the proxy. Once the virtual machine is rollbacked,

our outside fuzzer feeds the mutated input via the proxy server.

However, the process is also very slow. Time is mainly spent on: 1)

snapshot/rollback of a complete Windows System. 2) establish the

connection to the proxy server with slow network initialization and

routing. It almost costs 32 seconds to complete feeding the mutated

data to GX Works2. Moreover, if the protocol is time-sensitive, the

connection between the proxy and supervisory software will be

closed due to slow network recovery. For example, one of our targets

- Proficy Machine Edition, close the inner connection, then we

could not feed the mutated data. In addition, maintaining Windows

System snapshots of different protocol states would take up massive

storage space.
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Table 2: Summary of Supervisory Software under Testing

Vendor Software Version Image Size Device Proprietary Protocol? (Yes,No)

Mitsubishi GX Works2 1.591 671M Q06UDEHCPU Yes

Emerson Proficy Machine Edition 9.0 1200M GE RX 7i Yes

Schneider TwidoSuite 2.20.11 79M TWDLCAE40DRF Yes

Panasonic FPWIN GR 2.95 106M FP-X C60R Yes

Table 3: Summary of vulnerabilities found

Software Vulnerability Type Number status

GX Works2

HeapOverflow

Unknown crash

6

1

confirmed

Proficy Machine

Edition

NullPointer Dereference

Unknown crash

1

3

confirmed

TwidoSuit Unknown crash 1 confirmed

FPWIN GR Unknown crash 1 confirmed

Table 4: Summary of sessions under Testing

Software

# Selected

session

# Origin

states

# Post-pruned

states

GX Works2 8 326 93

Proficy

Machine Edition

8 842 52

TwidoSuit 2 136 27

FPWIN GR 4 200 31

TOTAL 22 1504 203

Table 5: Time-cost for fuzzing supervisory software (sec)

Software Launch

GUI

Operations

Network

Communication

others

GX Works2 1.095 2.363 1.850 3.415

Proficy

Machine Edition

4.115 4.349 9.374 5.356

FPWIN GR 1.114 0.361 1.274 2.371

TwidoSuite 6.765 0.592 5.444 2.157

5.4 Case Study: GXWorks2
In this section, we discuss a bug and a dynamic field ICS3Fuzzer
discovered in the GX Works2. GX Works2 is an integrated PLC

Engineering Software from Mitsubishi Electric. Note that we have

obtained the permission from the vendor for the disclosure, and

the bug has been fixed.

5.4.1 Dynamic fields analysis. To identify dynamic fields, we col-

lected and analyzed a series of heartbeat messages. We then easily

identified that the offsets of 2 and 37 correspond to the dynamic

fields (sequence number field). After collecting sequenced traffic of

the same functionality twice, we found a new dynamic field when

comparing the corresponding messages (as shown in Fig. 8).

d7 00 73 00 00 11 11 07 00 00 00 e4 03 00 ff ff
03 00 00 bc 00 9c 00 0c 08 00 00 00 00 04 04 00
00 00 00 0b 05 0e 00 00 00 20 20 20 20 20 20 20
20 20 00 20 20 20 20 20 20 20 20 20 20 20 20 20

0000
0010
0020
0030

sequence 
number

da 00 00 ff 6a 02 0c 00 01 00 ea 02 00 10 02 02
e4 ee 90 1c a5 0c b4 a0 c9 71 10 03

0000
0010 challenge

a) sequence number field  in heartbeat packet

b) challenge field   

length

Figure 8: Dynamic fields in the protocol of GXWorks2

For the same input state, every time the same session is triggered,

there are 10 bytes that are always different, and it changes dynami-

cally. By replaying the dynamic field, we can enter the subsequent

state, indicating that the dynamic field does not need to be adjusted.

To further understand the reasons for not adjusting, we reverse

engineered the related processing logic of the program. Specifically,

whenGXWorks2 receives themessage, we set amemory breakpoint

towards the dynamic field through a debugging tool. By tracking

the subsequent execution trace, we located this field to be processed

by the function sub_17224 of module ECUNIT_PLC_QN.dll, which
then called the function sub_61247 to generate a 32-byte output.

Combining further analysis of communication messages, we figure

out that it is a challenge-response mechanism: the 10-byte challenge

initiated by the PLC device and the supervisory software generates

a 32-byte response by processing it. Since we are replaying the

challenge field from the PLC device, the dynamic field does not

need to be adjusted. This also proves that the supervisory software

has default trust on an isolated PLC device.

5.4.2 Vulnerability discovery. In Fig. 9, we show a crash log caused

by a bug (CVE-2021-20587) we found in GX Works2. We also list

the input message that were used to trigger this bug. The crash was

caused by feeding the 3329-th mutated data under state S1 within

the functionality “Connection Test". To reproduce the crash, we au-

tomatically controlled the proxies to steer the supervisory software

to go through state S0 to state S1. Then we fed the recorded data

to the input state, and the crash was reproduced.

By manually analyzing the crash, we have confirmed that it was

a heap overflow bug, which was triggered by function sub_121A of

the ECUNIT_PLC_QN.dll module. The root cause of the vulnerabil-

ity is the lack of length check when supervisory software receives

the message under state S1. Interestingly, when we tried to feed

the mutated data to other input states, we found it could not cause

a crash. This proves that the bug is strongly related to the specific

input state.
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"functionality":"Connection Test",
“mutation_cnt”:3329,
“state”:1,
“data”:d700010000111107000000e40300ffff03000087109c000c08000000000304000000000
101010000004444….(44*4192)…44020008baba200327104117052002000101ea02

repeat 4192 times

Split format:
["number", "d700"], ["number", "01"], ["binary", 
"0000111107000000e40300ffff03000038009c000c08000000000304000000000101"], 
["number", "01"], ["number", "000000"], 
["str", "513036554445484350552020202020206a"], ["binary", "020008baba2003"], 
["binary", "2710411705"], ["binary", "2002000101ea02"]

a) Crash log of connection test functionality

b) The input message that triggered the crash above

Figure 9: Crash log of the GX Works2 and the triggering in-
put message

5.5 Manual Work
Automating the whole fuzzing process is not easy, since necessary

pre-processing is needed to handle heavy GUI and proprietary pro-

tocol, which we admit is manual effort. The manual effort mainly

includes a) exploring GUI interface, b) writing activators, c) ob-

taining protocol knowledge, and d) verifying the accuracy of the

analysis. Generally speaking, several hours are needed for each ICS

supervisory software. Note it is a one-time job and the following

fuzzing process is fully automated.

For a), we use expertise knowledge to identify the GUI inter-

face. It generally takes several minutes. For b), we pre-define the

GUI operation orders and locate the positions of the corresponding

button. It typically costs dozens of minutes assuming the user is

familiar with AutoIt. For c), we collect traffic and obtain bitmap of

execution traces. Then we write scripts to analyze these data. We

manually identify the type of dynamic field. It costs several dozens

of minutes or even several hours for the complex protocols. For d),

we verify the stability by automating each involved functionality.

In the tests, we indeed encountered issues of instability, mainly

due to inaccuracy of analysis. We have analyzed the root cause and

provided general approaches to handle these issues. Specifically,

there are three common reasons: (i) The device state is changed

when capturing traffic. We solved it by keeping the device with the

same target program. (ii) The software pops up abnormal windows

or hangs for incorrect simulation. We solved it checking the com-

munication template and dynamic fields. (iii) Wrong buttons are

pushed because of the flaw in pre-defined GUI operations. We need

to correct the pre-defined operations to solve it.

6 RELATEDWORK
In this section, wemainly discuss the relevant work on the following

four topics: protocol re-engineering, protocol fuzzing, GUI-related

testing, and security of supervisory software.

Protocol Re-engineering. The goal of re-engineering a net-

work protocol is to obtain knowledge of message format and proto-

col state machine. Existing techniques fall into two categories. One

analyzes program execution semantics such as execution traces

and memory traces [7, 31, 40]. The other focuses on analyzing

network traces such as aligning message sequences [5, 9, 23, 42].

These methods do help to a better understanding of the proprietary

protocols. However, in terms of obtaining accurate semantics of

protocol such as challenge-response mechanism, session ID, time-

stamp field, etc, the existing work still needs manual work and is

time-consuming. In contrast, our framework adopts an existing

work to re-engineering the protocol formats and proposes differen-

tial analysis to help manually obtain accurate semantics of protocol

for device simulation.

Protocol Fuzzing. Existing studies focus on protocol fuzzing

can be mainly categorized as 1) black-box fuzzing [1, 15, 32, 41]

where the approach can only leverage the input and output of

the target program. 2) grey-box fuzzing [25, 26, 35] where the ap-

proach can obtain internal program state information from binary

or source code. To achieve testing deep state-space of programs,

both categories need to carefully manage different protocol states

during fuzzing. SNOOZE [2] and Achilles [41] use user-defined sce-

narios and protocol specifications to fuzz different protocol states.

Rui et al. [27] proposed a “stateful rule tree” based solution to test

and iterate different protocol states. Suzaki et al. [39] proposed a

snapshot/rollback mechanism to fuzz and recover different proto-

col states. Pulsar [15] built a communication template and used

the Markov chain to represent state transition. Most of the work

focus on the server-role target and the protocol state transition

can be easily achieved only by sending data. In the viewpoint of

supervisory software, protocol states are high-coupled with GUI

operations, few works can be applied to achieve deep state-space

fuzzing. In contrast, ICS3Fuzzer can well-manage input states based

on a strategy (see section 4.3 ) and automatically enter any iden-

tified input state by letting the two proxies enforce coordinated

synchronized controls of GUI operations and network.

GUI-related Testing. For fuzzing closed-source Windows GUI

binaries, existing work focuses on identifying the relevant module

to write harness for focused fuzzing, such as WINNIE [21] and

WinAFL [14]. However, WinAFL cannot be used for its strict re-

quirements of target and the protocol is not implemented as a pure

function. WINNIE cannot be applied either due to high-coupled

protocol implementations with GUI in supervisory software. In

addition, our work is fundamentally different from existing GUI

fuzzing works (e.g., [38] [17] ) that attempts to find bugs by GUI

operations. Our work relies on GUI operations to restore the tar-

get program to a pre-determined state and then find bugs via the

network interface.

Security of supervisory software. In addition to exploiting

the vulnerability of supervisory software, the attacker can make the

GUI of the supervisory software display incorrect data, presenting

a false picture to the operators [18, 22, 29]. Besides, the attacker

can hijack the process that supervisory software loads DLLs, then

the malicious codes can be executed with the same privileges as the

application, which is reported by ICS-CERT [19]. To defend against

these attacks, in addition to efforts in security management such

as adding a firewall, and improving personnel security awareness,

the best alternative solution is to find and fix the bugs. Our work is

an attempt at this kind of approach.

CONCLUSION
We present the first fuzzing framework ICS3Fuzzer towards supervi-
sory software, which is customizable to support detecting protocol

implementation vulnerabilities in different supervisory software
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from various vendors. Given a functionality of supervisory software,

we can build a communication template to simulate the session

based on captured messages. With the help of automated synchro-

nization of network and GUI behavior, ICS3Fuzzer can reach any

input state and feed mutated inputs directionally. By conducting

experiments in 4 different commercial supervisory software, we

successfully identified 13 vulnerabilities.
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